如圖,某農(nóng)場在M處有一堆肥料沿道路MA或MB送到大田ABCD中去,已知|MA|=6,|MB|=8,且|AD|≤|BC|,∠AMB=90°,能否在大田中確定一條界線,使位于界線一側(cè)沿MB送肥料較近?若能,請建立適當坐標系求出這條界線方程.
設(shè)P為界線上的任意一點,則有PA+MA=PB+MB,即PA-PB=MB-MA=2(定值),
∴界線為以A,B為焦點的雙曲線的右支
如圖所示,以AB所在直線為x軸,線段AB的垂直平分線為y軸,建立直角坐標系,
設(shè)所求雙曲線的標準方程為
x2
a2
-
y2
b2
=1
=1(a>0,b>0)
∵2a=2,2c=AB=
82+62
=10,可得a=1,c=5,b=
c2-a2
=2
6

∴雙曲線方程為x2-
y2
24
=1,
∵P為以曲線右支上一點,且|AD|≤|BC|,可得x>0
即所求界線的方程為x2-
y2
24
=1,(x>0).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求滿足下列條件的雙曲線方程
(1)兩焦點分別為F1(-10,0),F(xiàn)2(10,0),點P(8,0)在雙曲線上;
(2)已知雙曲線過A(3,-4
2
),B(
9
4
,5)
兩點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)k是實數(shù),若方程
x2
k-4
-
y2
k+4
=1
表示的曲線是雙曲線,則k的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線
x2
36
-
y2
m
=1
的焦距為18,則雙曲線的漸近線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別F1、F2,O為雙曲線的中心,P是雙曲線右支上異于頂點的任一點,△PF1F2的內(nèi)切圓的圓心為I,且⊙I與x軸相切于點A,過F2作直線PI的垂線,垂足為B,若e為雙曲線的離心率,下面八個命題:
①△PF1F2的內(nèi)切圓的圓心在直線x=b上;
②△PF1F2的內(nèi)切圓的圓心在直線x=a上;
③△PF1F2的內(nèi)切圓的圓心在直線OP上;
④△PF1F2的內(nèi)切圓必通過點(a,0);
⑤|OB|=e|OA|;
⑥|OB|=|OA|;
⑦|OA|=e|OB|;
⑧|OA|與|OB|關(guān)系不確定.
其中正確的命題的代號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文科做)雙曲線
x2
a2
-
y2
b2
=1
的左焦點為F1,頂點為A1,A2,P是該雙曲線右支上任意一點,則分別以線段PF1,A1A2為直徑的兩圓一定是( 。
A.相交B.內(nèi)切C.外切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知對稱軸為坐標軸的雙曲線的漸近線的漸近線方程為y=±
b
a
x(a>0,b>0),若雙曲線上有一點M(x0,y0),使的a|y0|>b|x0|,則雙曲線的焦點( 。
A.在x軸上
B.在y軸上
C.黨a>b時在x軸上,當a>b時在y軸上
D.不能確定在x軸上還是在y軸上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線y2-
x2
2
=1的漸近線方程為( 。
A.y=±2xB.y=±
2
x
C.y=±
2
2
x
D.y=±
1
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線
x2
4
-
y2
a
=1
的實軸為A1A2,虛軸為B1B2,將坐標系的右半平面沿y軸折起,使雙曲線的右焦點F2折至點F,若點F在平面A1B1B2內(nèi)的射影恰好是該雙曲線的左頂點A1,且直線B1F與平面A1B1B2所成角的正切值為
5
5
,則a=______.

查看答案和解析>>

同步練習冊答案