如圖,在五面體ABCDEF中,,,,

(Ⅰ)求異面直線BF與DE所成角的余弦值;
(Ⅱ)在線段CE上是否存在點M,使得直線AM與平面CDE所成角的正弦值為?若存在,試確定點M的位置;若不存在,請說明理由.

(Ⅰ);(Ⅱ)存在,點M為CE中點。

解析試題分析:解法一:建立如圖所示的直角坐標系,                              ……2分

不妨設AB=1
     
(Ⅰ)
                                ……5分
異面直線BF與DE所成角的余弦值為.                                  ……6分
(Ⅱ)設平面CDE的一個法向量為


     令                           ……8分
設存在點M滿足條件,由

                                                        ……10分
直線AM與平面CDE所成角的正弦值為
 
故當點M為CE中點時,直線AM與面CDE所成角的正弦值為.                 ……13分
解法二:(Ⅰ)不妨設AB=1,

∴∠CED異面直線BF與DE所成角      
CE=BF=,ED=DC=,

所以,異面直線BF與DE所成角的余弦值為                                  ……6分
(Ⅱ)令A到平面CDE距離為h,在AD上取點N,使得EF=AN,連結EN
,為平行四邊形
                                          ……8分

                                                 ……10分
令AM與平面CDE所成角為,
過M作MG//EF交FB于G
在平行四邊形EFBC中,MG=BC=1

解得:為FB的中點
MG//EF,為EC的中點。                                               ……13分
考點:本題考查了空間幾何體中異面直線夾角及線面角的求法與應用。
點評:從近些年看,以多面體為載體,重點考查直線與平面的位置關系一直是高考立體幾何命題的熱點.因為這類題目既可以考查多面體的概念和性質(zhì),又能考查空間的線面關系,并將論證和計算有機地結合在一起

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點,問在棱AB上是否存在一點E,使DE∥平面AB1C1?若存在,試確定點E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題10分)三棱柱中,側(cè)棱底面,,

(1)求異面直線所成角的余弦值;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

圖1,平面四邊形關于直線對稱,,.把沿折起(如圖2),使二面角的余弦值等于

對于圖二,完成以下各小題:
(Ⅰ)求兩點間的距離;
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,底面,點,分別在棱上,且 

(Ⅰ)求證:平面
(Ⅱ)當的中點時,求與平面所成的角的正弦值;
(Ⅲ)是否存在點使得二面角為直二面角?若存在,請確定點E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,,E、F分別是AB、PD的中點.

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1DA1B1中點.

(1)求證:C1DAB1 ;
(2)當點FBB1上什么位置時,會使得AB1⊥平面C1DF?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱中,平面,,,的中點.

(1)求證:∥平面;
(2)求二面角的余弦值;
(3)設的中點為,問:在矩形內(nèi)是否存在點,使得平面.若存在,求出點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分) 如圖,平面⊥平面,其中為矩形,為梯形,,=2=2,中點.
(Ⅰ) 證明;
(Ⅱ) 若二面角的平面角的余弦值為,求的長.

查看答案和解析>>

同步練習冊答案