【題目】已知曲線C的極坐標方程是,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C經(jīng)過伸縮變換得到曲線E,直線(t為參數(shù))與曲線E交于A,B兩點.
(1)設曲線C上任一點為,求的最小值;
(2)求出曲線E的直角坐標方程,并求出直線l被曲線E截得的弦AB長.
【答案】(1)(2);
【解析】
(1)由,得出曲線C的直角坐標方程,進而得出曲線C的參數(shù)方程,利用參數(shù)方程,設出的坐標,結(jié)合正弦函數(shù)的性質(zhì),即可得出答案;
(2)由伸縮變換得出曲線的直角坐標方程,將直線的參數(shù)方程可化為標準形式,并代入曲線的直角坐標方程,結(jié)合直線參數(shù)方程參數(shù)的幾何意義,即可得出.
解:(1)根據(jù),進行化簡得
∴曲線C的參數(shù)方程(為參數(shù))
設
∴
則當,即時,取最小值為
(2)∵,∴
代入C得.
將直線的參數(shù)方程可化為標準形式(t為參數(shù))
代入曲線E方程得:(A,B處對應的參數(shù)為,)
∴
∴.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線E:上一點M到焦點F的距離為5.
(1)求拋物線E的方程;
(2)直線與圓C:相切且與拋物線E相交于A,B兩點,若△AOB的面積為4(O為坐標原點),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在對人們休閑方式的一次調(diào)查中,共調(diào)查120人,其中女性70人,男性50人.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運動.
(1)請畫出性別與休閑方式的列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.10的前提下,認為休閑方式與性別有關?
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)給出下列四個結(jié)論:①對,,使得無解;②對,,使得有兩解;③當時,,使得有解;④當時,,使得有三解.其中,所有正確結(jié)論的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的左、右焦點分別為,.已知點在橢圓上,且點M到兩焦點距離之和為4.
(1)求橢圓的方程;
(2)設與MO(O為坐標原點)垂直的直線交橢圓于A,B(A,B不重合),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關說法正確的是( )
A.的展開式中含項的二項式系數(shù)為20;
B.事件為必然事件,則事件、是互為對立事件;
C.設隨機變量服從正態(tài)分布,若,則與的值分別為,;
D.甲、乙、丙、丁4個人到4個景點旅游,每人只去一個景點,設事件“4個人去的景點各不相同”,事件“甲獨自去一個景點”,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的展開式中第5項與第7項的二項數(shù)系數(shù)相等,且展開式的各項系數(shù)之和為1024,則下列說法正確的是( )
A.展開式中奇數(shù)項的二項式系數(shù)和為256
B.展開式中第6項的系數(shù)最大
C.展開式中存在常數(shù)項
D.展開式中含項的系數(shù)為45
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額,依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應納的稅,試寫出調(diào)整前后關于的函數(shù)表達式;
(2)某稅務部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
先從收入在及的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調(diào)整后小紅的實際收入比調(diào)整前增加了多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com