【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),設(shè)h(x)=f(x)﹣g(x).
(1)求h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.

【答案】
(1)解:由題意得 ,即﹣1<x<1.

∴h(x)=f(x)﹣g(x)的定義域為(﹣1,1)


(2)解:∵對任意的x∈(﹣1,1),﹣x∈(﹣1,1)

h(﹣x)=loga(1﹣x)﹣loga(1+x)=﹣h(x),

∴h(x)=loga(1+x)﹣loga(1﹣x)是奇函數(shù)


(3)解:由a=log327+log2,得a=2.

f(x)=loga(1+x)>1,即log2(1+x)>log22,

∴1+x>2,即x>1.

故使f(x)>1成立的x的集合為{x|x>1}


【解析】(1)利用對數(shù)函數(shù)的性質(zhì)列出不等式求解函數(shù)的定義域.(2)利用函數(shù)的奇偶性的定義判斷即可.(3)求出a,然后利用對數(shù)函數(shù)的單調(diào)性求解不等式即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】放射性元素由于不斷有原子放射出微粒子而變成其他元素,其含量不斷減少,這種現(xiàn)象稱為衰變.假設(shè)在放射性同位素銫137的衰變過程中,其含量M(單位:太貝克)與時間t(單位:年)滿足函數(shù)關(guān)系:M(t)=M0 ,其中M0為t=0時銫137的含量.已知t=30時,銫137含量的變化率是﹣10In2(太貝克/年),則M(60)=(
A.5太貝克
B.75In2太貝克
C.150In2太貝克
D.150太貝克

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=|lgx|,且0<a<b<c時,有f(a)>f(c)>f(b),則(
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時,f(x)= .g(x)=
(1)求當(dāng)x<0時,函數(shù)f(x)的解析式,并在給定直角坐標(biāo)系內(nèi)畫出f(x)在區(qū)間[﹣5,5]上的圖象;(不用列表描點)

(2)根據(jù)已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中

①函數(shù)f(x)=在定義域內(nèi)為單調(diào)遞減函數(shù);

②已知定義在R上周期為4的函數(shù)f(x)滿足f(2﹣x)=f(2+x),則f(x)一定為偶函數(shù);

③若f(x)為奇函數(shù),則f(x)dx=2f(x)dx(a>0);

④已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0),則a+b+c=0是f(x)有極值的充分不必要條件;

⑤已知函數(shù)f(x)=x﹣sinx,若a+b>0,則f(a)+f(b)>0.

其中正確命題的序號為________(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),設(shè)h(x)=f(x)﹣g(x).
(1)求h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為( )(結(jié)果保留一位小數(shù).參考數(shù)據(jù):)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù),設(shè)其導(dǎo)函數(shù)為,當(dāng)時,恒有,令,則滿足的實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣ax+b,在點M(1,f(1))處的切線方程為9x+3y﹣10=0,求
(1)實數(shù)a,b的值;
(2)函數(shù)f(x)的單調(diào)區(qū)間以及在區(qū)間[0,3]上的最值.

查看答案和解析>>

同步練習(xí)冊答案