【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地,目前德國漢堡,美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出,某機構為調查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調查結果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據已知數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運有關?
(3)已知在被調查的年齡大于50歲的支持者中有6名女性,其中2名是女教師.現從這6名女性中隨機抽取2名,求恰有1名女教師的概率.
附:,,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)表格見解析;(2)能在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運有關;(3).
【解析】
(1)根據已知數據即可填表.
(2)根據列聯(lián)表求出觀測值,再根據獨立性檢驗的基本思想即可求解.
(3)記6人為,其中表示教師,列出基本事件個數,再根據古典概型的概率計算公式即可求解.
(1)
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 20 | 60 | 80 |
年齡大于50歲 | 10 | 10 | 20 |
合計 | 30 | 70 | 100 |
(2),
所以能在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運有關;
(3)記6人為,其中表示教師,
從6人任意抽2人的所有等可能事件是:,,,,,
,,,,,,,,,共15個,
其中恰有1位教師有8個基本事件:,,,,,,,,
所以所求概率是.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐 中,是正三角形,四邊形ABCD是矩形,且平面平面.
(1)若點E是PC的中點,求證:平面BDE;
(2)若點F在線段PA上,且,當三棱錐的體積為時,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,過頂點在原點、對稱軸為軸的拋物線上的點作斜率分別為,的直線,分別交拋物線于,兩點.
(1)求拋物線的標準方程和準線方程;
(2)若,證明:直線恒過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與軸的非負半軸重合,若曲線的極坐標系方程為
,直線的參數方程為為參數).
(1)求曲線的直角坐標方程與直線的普通方程;
(2)設點直線與曲線交于兩點, 求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾,調查結果如下面的2×2列聯(lián)表.
“非體育迷” | “體育迷” | 總計 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
總計 | 75 | 25 | 100 |
(1)據此資料判斷是否有90%的把握認為“體育迷”與性別有關.
(2)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”共有5人,其中女性2名,男性3名,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
平面直角坐標系中,射線:,曲線的參數方程為(為參數),曲線的方程為;以原點為極點,軸的非負半軸為極軸建立極坐標系.曲線的極坐標方程為.
(Ⅰ)寫出射線的極坐標方程以及曲線的普通方程;
(Ⅱ)已知射線與交于,,與交于,,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將方格表任意一個角上的小方格表挖去,剩下的圖形稱為“角形”.現在方格表中放置一些兩兩不重疊的角形,要求角形的邊界與方格表的邊界或分格線重合.求正整數的最大值,使得無論以何種方式放置了個角形之后,總能在方格表中再放入一個完整的角形.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com