【題目】已知函數(shù) .
(1)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)時,求函數(shù)在區(qū)間上的最大值;
(3)對任意,恒有,求實數(shù)的取值范圍.
【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為 , (2)函數(shù)取得最大值 (3)
【解析】
(1)將代入函數(shù),去掉絕對值得到分段函數(shù),然后分別求導(dǎo),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.
(2),則,對函數(shù)求導(dǎo),判斷單調(diào)性,根據(jù)單調(diào)性即可得出函數(shù)在區(qū)間上的最大值.
(3)由(1)(2)得,,分情況討論、時函數(shù)的單調(diào)性,從而得出實數(shù)的取值范圍.
(1)當(dāng)時, ,
若時,則,令,解得;
若時,則恒成立,所以,
所以函數(shù)的單調(diào)遞增區(qū)間為 ,.
(2)若,當(dāng)時, ,.
令,解得或.
列表如下:
當(dāng)時,函數(shù)取得最大值.
(3)由(1)(2)得,.
①當(dāng)時,即時,
,即.
因為在上單調(diào)遞增,
所以當(dāng)時, 取得最小值,
所以,解得,又,所以.
②當(dāng)即時,
當(dāng)時,,即,
與矛盾,
所以,實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019舉國上下以各種不同的形式共慶新中國成立70周年,某商家計劃以“我和我的祖國"為主題舉辦一次有獎消費活動,此商家先把某品牌酒重新包裝,包裝時在每瓶酒的包裝盒底部隨機印上“中"國"“夢”三個字樣中的一個,之后隨機裝箱(1箱4瓶),并規(guī)定:若顧客購買的一箱酒中的四瓶酒底部所印的字為同一個字,則此顧客獲得一等獎,此箱灑可優(yōu)惠36元;若顧客購買的一箱酒的四瓶灑底部集齊了“中"“國"二字且僅有此二字,則此顧客獲得二等獎,此箱灑可優(yōu)惠27元;若顧客購買的一箱酒中的四瓶酒的底部集齊了“中”“國"“夢”三個字,則此顧客獲得三等獎,此箱酒可優(yōu)惠18元(注:每箱單獨兌獎,箱與箱之間的包裝盒不能混).
(1)①設(shè)為顧客購買一箱酒所優(yōu)惠的錢數(shù),求的分布列;
②若不計其他損耗,商家重新包裝后每箱酒提價a元,試問a取什么范圍時才能使活動后的利潤不會小于搞活動之前?
(2)若顧客一次性購買3箱酒,并都中獎,可再加贈一張《我和我的祖國》電影票,顧客小張一次性購買3箱酒,共優(yōu)惠了72元,試問小張能否得到電影票,概率多大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點為,離心率為,為圓的圓心.
(1)求橢圓的方程;
(2)已知過橢圓右焦點的直線交橢圓于兩點,過且與垂直的直線與圓交于兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線的焦點為,為拋物線上異于原點的任意一點,以為直徑作圓,當(dāng)直線的斜率為1時,.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過焦點作的垂線與圓的一個交點為,交拋物線于,(點在點,之間),記的面積為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司統(tǒng)計了2010~2018年期間公司年收的增加值(萬元)以及相應(yīng)的年增長率,所得數(shù)據(jù)如下所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
增加值 | 1555 | 2100 | 2220 | 2740 | 3135 | 3563 | 4041 | 5494.4 | 6475 |
增長率 |
|
(1)通過散點圖可知,可用線性回歸模型擬合2010~2014年與的關(guān)系;
①求2010~2014年這5年期間公司年利潤的增加值的平均數(shù);
②求關(guān)于的線性回歸方程;
(2)從哪年開始連續(xù)三年公司利潤增加值的方差最大?(不需要說明理由)
附:參考公式:回歸直線方程中的斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=0時,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)令求函數(shù)的極值.
(3)若,正實數(shù)滿足,
證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.
(1)證明:平面;
(2)設(shè)點在線段上運動,平面與平面所成銳二面角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)利用周末組織教職員工進行了一次秋季登山健身的活動,有N個人參加,現(xiàn)將所有參加者按年齡情況分為等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6人.
(1)根據(jù)此頻率分布直方圖求N;
(2)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為X,求X的分布列、均值及方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com