如圖,多面體的直觀圖及三視圖如圖所示,分別為的中點.
(1)求證:平面;
(2)求多面體的體積.
(1)證明:見解析;(2)多面體的體積.
解析試題分析: (1)由多面體的三視圖知,三棱柱中,底面是等腰
直角三角形,,平面,側(cè)面都是邊長為的正方形.
連結(jié),則是的中點,由三角形中位線定理得,得證.
(2)利用平面,得到,
再據(jù)⊥,得到⊥平面,從而可得:四邊形 是矩形,且側(cè)面⊥平面.
取的中點得到,且平面.利用體積公式計算.
所以多面體的體積. 12分
試題解析: (1)證明:由多面體的三視圖知,三棱柱中,底面是等腰
直角三角形,,平面,側(cè)面都是邊長為的
正方形.連結(jié),則是的中點,
在△中,,
且平面,平面,
∴∥平面. 6分
(2) 因為平面,平面,
,
又⊥,所以,⊥平面,
∴四邊形 是矩形,且側(cè)面⊥平面 8分
取
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC為正三角形,AA1=AB=6,D為AC的中點.
(1)求證:直線AB1∥平面BC1D;
(2)求證:平面BC1D⊥平面ACC1A;
(3)求三棱錐C﹣BC1D的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正方形的邊長為,點分別在邊上,,現(xiàn)將△沿線段折起到△位置,使得.
(1)求五棱錐的體積;
(2)求平面與平面的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
在平面內(nèi),三角形的面積為s,周長為c,則它的內(nèi)切圓的半徑r=.在空間中,三棱錐的體積為V,表面積為S,利用類比推理的方法,可得三棱錐的內(nèi)切球(球面與三棱錐的各個面均相切)的半徑R為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com