【題目】《九章算術》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )
A. B. C. D.
【答案】B
【解析】幾何體如圖,球心為O,半徑為,表面積為,選B.
點睛:涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關系,或只畫內切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.
【題型】單選題
【結束】
9
【題目】是雙曲線的左右焦點,過且斜率為1的直線與兩條漸近線分別交于兩點,若,則雙曲線的離心率為( )
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠用7萬元錢購買了一臺新機器,運輸安裝費用2千元,每年投保、動力消耗的費用也為2千元,每年的保養(yǎng)、維修、更換易損零件的費用逐年增加,第一年為2千元,第二年為3千元,第三年為4千元,依此類推,即每年增加1千元.
(1)求使用n年后,保養(yǎng)、維修、更換易損零件的累計費用S(千元)關于n的表達式;
(2)問這臺機器最佳使用年限是多少年?并求出年平均費用(單位:千元)的最小值.(最佳使用年限是指使年平均費用最小的時間,年平均費用=(購入機器費用+運輸安裝費用+每年投保、動力消耗的費用+保養(yǎng)、維修、更換易損零件的累計費用)÷機器使用的年數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經人行道時,應當減速慢行;遇行人正在通過人行道,應當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(2)預測該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式: , .
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若定義在R上的偶函數(shù)滿足,且時, ,則函數(shù)的零點個數(shù)是( )
A. 6個B. 8個C. 2個D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某移動支付公司隨機抽取了100名移動支付用戶進行調查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用移動支付超過3次的樣本中,按性別用分層抽樣隨機抽取5名用戶.
①求抽取的5名用戶中男、女用戶各多少人;
②從這5名用戶中隨機抽取2名用戶,求抽取的2名用戶均為男用戶的概率.
(2)如果認為每周使用移動支付次數(shù)超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過0.05的前提下,認為“喜歡使用移動支付”與性別有關?
附表及公式:
0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是兩條不同的直線, 是兩個不同的平面,則下列命題中正確的是( )
A. 若, ,則
B. 若, ,則
C. 若, , ,則
D. 若,且,點,直線,則
【答案】C
【解析】A. 若, ,則或;
B. 若, ,則無交點,即平行或異面;
C. 若, , ,過作平面與分別交于直線s,t,則, ,所以t,再根據(jù)線面平行判定定理得,因為, ,所以,即
D. 若,且,點,直線,當B在平面內時才有,
綜上選C.
【題型】單選題
【結束】
11
【題目】甲、乙、丙、丁四位同學參加比賽,只有其中三位獲獎.甲說:“乙或丙未獲獎”;乙說:“甲、丙都獲獎”;丙說:“我未獲獎”;丁說:“乙獲獎”.四位同學的話恰有兩句是對的,則( )
A. 甲和乙不可能同時獲獎 B. 丙和丁不可能同時獲獎
C. 乙和丁不可能同時獲獎 D. 丁和甲不可能同時獲獎
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(n)是定義在N*上的增函數(shù),f(4)=5,且滿足:
①任意n∈N*,f(n) Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).
(1)求f(1),f(2),f(3)的值;
(2)求f(n)的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的任意三個頂點為頂點的三角形的面積是.
(1)求橢圓的方程;
(2)設是橢圓的右頂點,點在軸上.若橢圓上存在點,使得,求點橫坐標的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com