【題目】如圖所示是一個三棱臺ABC-A′B′C′,試用兩個平面把這個三棱臺分成三部分,使每一部分都是一個三棱錐.
科目:高中數學 來源: 題型:
【題目】如圖,兩個正方形ABCD和ADEF所在平面互相垂直,設M、N分別是BD和AE的中點,那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE異面.其中假命題的個數為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)、g(x)分別是定義在R上的奇函數和偶函數,當x<0時,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數g(x)是奇函數f(x)(x∈R)的導函數,f(1)=0,當x>0時,xg(x)﹣f(x)<0,則使得f(x)<0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(0,1)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(﹣1,0)∪(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)證明:AG∥平面BDE.
(2)求平面BDE和平面ADE所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域[﹣1,5],部分對應值如表,f(x)的導函數y=f′(x)的圖象如圖所示
x | ﹣1 | 0 | 2 | 4 | 5 |
F(x) | 1 | 2 | 1.5 | 2 | 1 |
下列關于函數f(x)的命題;
①函數f(x)的值域為[1,2];
②函數f(x)在[0,2]上是減函數
③如果當x∈[﹣1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當1<a<2時,函數y=f(x)﹣a最多有4個零點.
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設二面角D﹣AE﹣C為60°,AP=1,AD= ,求三棱錐E﹣ACD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為 (a為常數,n∈N*).
(1)求a1 , a2 , a3;
(2)若數列{an}為等比數列,求常數a的值及an .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校對高一年級學生的數學成績進行統(tǒng)計,全年級同學的成績全部介于60分與100分之間,將他們的成績數據繪制如圖所示的頻率分布直方圖.現從全體學生中,采用分層抽樣的方法抽取80名同學的試卷進行分析,則從成績在[80,100]內的學生中抽取的人數為( )
A.56
B.32
C.24
D.18
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com