【題目】對于定義在區(qū)間D上的函數(shù),若存在正整數(shù)k,使不等式恒成立,則稱型函數(shù).

1)設函數(shù),定義域.型函數(shù),求實數(shù)a的取值范圍;

2)設函數(shù),定義域.判斷是否為型函數(shù),并給出證明.

(參考數(shù)據(jù):

【答案】12型函數(shù);證明見解析

【解析】

1)由型函數(shù),得到上恒成立,再由的取值范圍為,能求出a的取值范圍.2型函數(shù).證明如下:①先證明.方法1:記,.,上為減函數(shù),求出成立.方法2:記,.,,得, ,推導出.

解:(1)因為型函數(shù),

所以上恒成立,

的取值范圍為,所以

所以a的取值范圍為.

2型函數(shù).證明如下:①先證明.

方法1:記,.

所以,

所以上為減函數(shù),

所以,所以.

,所以成立.

方法2:記,.

,則,

,所以,

時,;當時,,

所以上為減函數(shù),在上為增函數(shù).

,,.

的圖象連續(xù)不間斷,

所以上存在唯一零點,

且當時,;當時,;

所以上為減函數(shù),在上為增函數(shù),

所以,

,所以,

所以得證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,直線,為平面上的動點,過點作直線的垂線,垂足為,且滿足

(1)求動點的軌跡的方程;

(2)過點作直線與軌跡交于,兩點,為直線上一點,且滿足,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認為“微信控”與“性別”有關?

(2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人是“微信控”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知定點,點P是圓上任意一點,線段的垂直平分線與半徑相交于點.

1)當點在圓上運動時,求點的軌跡方程;

2)過定點且斜率為的直線的軌跡交于兩點,若,求點到直線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某電視娛樂節(jié)目的游戲活動中,每人需完成A、B、C三個項目.已知選手甲完成A、B、C三個項目的概率分別為、.每個項目之間相互獨立.

(1)選手甲對A、B、C三個項目各做一次,求甲至少完成一個項目的概率.

(2)該活動要求項目A、B 各做兩次,項目C做三次.若兩次項目A均完成,則進行項目B,并獲得積分a;兩次項目B均完成,則進行項目C,并獲積分3a;三次項目C只要兩次成功,則該選手闖關成功并獲積分6a(積分不累計),且每個項目之間互相獨立.用X表示選手甲所獲積分的數(shù)值,寫出X的分布列并求數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求在區(qū)間上的值域;

(2)若過點存在條直線與曲線相切,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在一個周期內的簡圖如圖所示,則函數(shù)的解析式為___________,方程的實根個數(shù)為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,,,側面中心為O,點E是側棱上的一個動點,有下列判斷,正確的是(

A.直三棱柱側面積是B.直三棱柱體積是

C.三棱錐的體積為定值D.的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月,兩種移動支付方式的使用情況,從全校學生中隨機抽取了100人,發(fā)現(xiàn)樣本中兩種支付方式都不使用的有5人,樣本中僅使用和僅使用的學生的支付金額分布情況如下:

交付金額(元)

支付方式

大于2000

僅使用

18

9

3

僅使用

10

14

1

(Ⅰ)從全校學生中隨機抽取1人,估計該學生上個月,兩種支付方式都使用的概率;

(Ⅱ)從樣本僅使用和僅使用的學生中各隨機抽取1人,以表示這2人中上個月支付金額大于1000元的人數(shù),求的分布列和數(shù)學期望;

查看答案和解析>>

同步練習冊答案