【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是線段AB的中點(diǎn).
(Ⅰ)求證:D1M∥面B1BCC1;
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的銳角的余弦值.

【答案】證明(Ⅰ)因?yàn)樗倪呅蜛BCD是等腰梯形,且AB=2CD,所以AB∥DC.
又由M是AB的中點(diǎn),因此CD∥MB且CD=MB.
在四棱柱ABCD﹣A1B1C1D1中,因?yàn)镃D∥C1D1 , CD=C1D1 ,
可得C1D1∥MB,C1D1=MB,所以四邊形BMD1C1為平行四邊形,
因此D1M∥BC1 . 又D1M平面B1BCC1 , BC1平面B1BCC1
所以D1M∥平面B1BCC1
(Ⅱ)解:方法一:如圖(2),連接AC,MC.

由(Ⅰ)知CD∥AM且CD=AM,
所以四邊形AMCD為平行四邊形,
可得BC=AD=MC,
由題意∠ABC=∠PAB=60°,
所以△MBC為正三角形,
因此AB=2BC=2,CA=
因此CA⊥CB.
又D1C⊥AB,CD∥AB,故D1C⊥CD,而平面D1DCC1垂直平面ABCD且交于CD,則D1C⊥平面ABCD
以C為坐標(biāo)原點(diǎn),建立如圖(2)所示的空間直角坐標(biāo)系C﹣xyz
由DD1=2得D1C= ,所以A( ,0,0),B(0,1,0),D1(0,0,
因此M ,所以 設(shè)平面C1D1M的一個(gè)法向量為 ,
可得平面C1D1M的一個(gè)法向量
為平面ABCD的一個(gè)法向量
因此
所以平面C1D1M和平面ABCD所成的角(銳角)的余弦值為
方法二:由(Ⅰ)知平面D1C1M∩平面ABCD=AB,過(guò)點(diǎn)C向AB引垂線交AB于點(diǎn)N,

連接D1N,如圖(3).
由D1C⊥AB,CD∥AB,故D1C⊥CD,
而平面D1DCC1垂直平面ABCD且交于CD,
則D1C⊥平面ABCD,
可得D1N⊥AB,
因此∠D1NC為二面角C1﹣AB﹣C的平面角
在Rt△BNC中,BC=1,∠NBC=60°,可得CN=
所以ND1= =
在Rt△D1CN中,cos∠D1NC= ,
所以平面C1D1M和平面ABCD所成的角(銳角)的余弦值為
【解析】(Ⅰ)證明AB∥DC.說(shuō)明以四邊形BMD1C1為平行四邊形,推出D1M∥BC1 . 然后證明D1M∥平面B1BCC1(Ⅱ)方法一連接AC,MC.以C為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系C﹣xyz,求出相關(guān)的坐標(biāo),求出平面C1D1M的一個(gè)法向量,平面ABCD的一個(gè)法向量,利用空間向量的數(shù)量積求解二面角的平面角的余弦函數(shù)值.方法二:說(shuō)明∠D1NC為二面角C1﹣AB﹣C的平面角,通過(guò)在Rt△D1CN中,求解即可.
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA底面ABC,.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.

1)求證:MN平面BDE;

(2)求二面角C-EM-N的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).

(1)求異面直線AP,BM所成角的余弦值;
(2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為 ,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

(1)求回歸直線方程.

(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本)

參考數(shù)據(jù)如下:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E為AB的中點(diǎn),P為以A為圓心、AB為半徑的圓弧上的任意一點(diǎn),設(shè)向量 ,則λ+μ的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 (t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4 sinθ. (Ⅰ)將C2的方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)C1 , C2交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為 ,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}中,其前n項(xiàng)和為Sn , 且 ,等比數(shù)列{bn}中,其前n項(xiàng)和為Tn , 且 ,(n∈N*
(1)求an , bn;
(2)求{anbn}的前n項(xiàng)和Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正三角形的邊長(zhǎng)為,將它沿高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體外接球表面積為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為 (t為參數(shù),a>0)以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為 . (Ⅰ)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)a=2時(shí),求點(diǎn)P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點(diǎn)均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案