【題目】已知數(shù)列的前項和滿足,.數(shù)列的前項和為,則滿足的最小的值為______

【答案】7

【解析】

根據(jù)題意,將Sn=3an﹣2變形可得Sn﹣1=3an﹣1﹣2,兩式相減變形,并令n=1求出a1的值,即可得數(shù)列{an}是等比數(shù)列,求得數(shù)列{an}的通項公式,再由錯位相減法求出Tn的值,利用Tn>100,驗證分析可得n的最小值,即可得答案.

根據(jù)題意,數(shù)列{an}滿足Sn=3an﹣2,①

當(dāng)n≥2時,有Sn﹣1=3an﹣1﹣2,②,

①﹣②可得:an=3an﹣3an﹣1,變形可得2an=3an﹣1,

當(dāng)n=1時,有S1a1=3a1﹣2,解可得a1=1,

則數(shù)列{an}是以a1=1為首項,公比為的等比數(shù)列,則an=(n﹣1,

數(shù)列{nan}的前n項和為Tn,則Tn=1+23×(2+……+n×(n﹣1,③

則有Tn2×(2+3×(3+……+n×(n,④

③﹣④可得:Tn=1+()+(2+……×(n﹣1n×(n=﹣2(1)﹣n×(n,

變形可得:Tn=4+(2n﹣4)×(n

Tn>100,即4+(2n﹣4)×(n>100,

分析可得:n≥7,故滿足Tn>100的最小的n值為7;

故答案為:7.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中取兩個定點,再取兩個動點,,且.

(1)求直線的交點的軌跡的方程;

(2)的直線與軌跡交于兩點,過點軸且與軌跡交于另一點,為軌跡的右焦點,若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是邊長為2的等邊三角形,,當(dāng)三棱錐體積最大時,其外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖,記綜合評分為80分及以上的花苗為優(yōu)質(zhì)花苗.

1)用樣本估計總體,以頻率作為概率,若在兩塊實驗地隨機抽取3株花苗,求所抽取的花苗中優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;

2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計

甲培育法

20

乙培育法

10

合計

附:下面的臨界值表僅供參考.

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),若對任意,且,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上有2個零點,求實數(shù)的取值范圍.(注

(2)設(shè),若函數(shù)恰有兩個不同的極值點,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某北方村莊4個草莓基地,采用水培陽光栽培方式種植的草莓個大味美,一上市便成為消費者爭相購買的對象.光照是影響草莓生長的關(guān)鍵因素,過去50年的資料顯示,該村莊一年當(dāng)中12個月份的月光照量X(小時)的頻率分布直方圖如下圖所示(注:月光照量指的是當(dāng)月陽光照射總時長).

1)求月光照量(小時)的平均數(shù)和中位數(shù);

2)現(xiàn)準(zhǔn)備按照月光照量來分層抽樣,抽取一年中的4個月份來比較草莓的生長狀況,問:應(yīng)在月光照量,的區(qū)間內(nèi)各抽取多少個月份?

3)假設(shè)每年中最熱的5,67,8,910月的月光照量是大于等于240小時,且67,8月的月光照量是大于等于320小時,那么,從該村莊2018年的56,7,89,106個月份之中隨機抽取2個月份的月光照量進行調(diào)查,求抽取到的2個月份的月光照量(小時)都不低于320的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知mn是兩條不同的直線,,是兩個不同的平面,給出下列命題:

,,,則

,,,則;

,,則;

,,,則;

其中正確命題的序號是( 。

A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,焦距為,直線過橢圓的左焦點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線軸交于點是橢圓上的兩個動點,的平分線在軸上,.試判斷直線是否過定點,若過定點,求出定點坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案