【題目】已知拋物線:,,是拋物線上的兩點(diǎn),是坐標(biāo)原點(diǎn),且.
(1)若,求的面積;
(2)設(shè)是線段上一點(diǎn),若與的面積相等,求的軌跡方程.
【答案】(1)16(2)
【解析】
分析:(1),由拋物線的對(duì)稱性可知,關(guān)于軸對(duì)稱設(shè)出點(diǎn)的關(guān)系;,求出,點(diǎn)的坐標(biāo),求出面積。
與的面積相等,所以為的中點(diǎn),利用消參法求出軌跡方程
詳解:設(shè),,
(1)因?yàn)?/span>,
又由拋物線的對(duì)稱性可知,關(guān)于軸對(duì)稱,
所以,,
因?yàn)?/span>,所以,故,
則,又,
解得或(舍),
所以,于是的面積為.
(2)直線的斜率存在,設(shè)直線的方程為,
代入,得,,
且,,
因?yàn)?/span>,所以,
故,則,
所以或(舍),
因?yàn)?/span>與的面積相等,所以為的中點(diǎn),
則點(diǎn)的橫坐標(biāo)為,縱坐標(biāo)為,
故點(diǎn)的軌跡方程為.
點(diǎn)晴:圓錐曲線類的題目,畫出相應(yīng)的草圖,對(duì)題目給出的關(guān)鍵信息進(jìn)行分析轉(zhuǎn)化是做題的要點(diǎn),然后選取相應(yīng)的方法進(jìn)行解決問(wèn)題,計(jì)算量較大,計(jì)算的過(guò)程中含參的較多,大家要做到多想少算。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了分析在一次數(shù)學(xué)競(jìng)賽中甲、乙兩個(gè)班的數(shù)學(xué)成績(jī),分別從甲、乙兩個(gè)班中隨機(jī)抽取了10個(gè)學(xué)生的成績(jī),成績(jī)的莖葉圖如下:
(Ⅰ)根據(jù)莖葉圖,計(jì)算甲班被抽取學(xué)生成績(jī)的平均值及方差;
(Ⅱ)若規(guī)定成績(jī)不低于90分的等級(jí)為優(yōu)秀,現(xiàn)從甲、乙兩個(gè)班級(jí)所抽取成績(jī)等級(jí)為優(yōu)秀的學(xué)生中,隨機(jī)抽取2人,求這兩個(gè)人恰好都來(lái)自甲班的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一定點(diǎn),及一定直線:,以動(dòng)點(diǎn)為圓心的圓過(guò)點(diǎn),且與直線相切.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)在直線上,直線,分別與曲線相切于,,為線段的中點(diǎn).求證:,且直線恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)據(jù),,,,的平均值為2,方差為1,則數(shù)據(jù),,,相對(duì)于原數(shù)據(jù)( )
A.一樣穩(wěn)定B.變得比較穩(wěn)定C.變得比較不穩(wěn)定D.穩(wěn)定性不可以判斷
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的離心率為,過(guò)其右焦點(diǎn)作斜率為的直線,交雙曲線的兩條漸近線于兩點(diǎn)(點(diǎn)在軸上方),則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于兩點(diǎn),若,則( )
A. B. 8 C. 16 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,,設(shè)函數(shù).
(1)若函數(shù)的圖象關(guān)于直線對(duì)稱,且時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>;
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)實(shí)數(shù)為的最大值,若實(shí)數(shù),,滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>;
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)實(shí)數(shù)為的最大值,若實(shí)數(shù),,滿足,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com