(坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系xOy中,直線的參數(shù)方程是(t為參數(shù))。以O(shè)為極點(diǎn),x軸正方向?yàn)闃O軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為,直線與曲線C的交點(diǎn)個數(shù)為        個。
2

試題分析:根據(jù)題意,由于直線l的參數(shù)方程為,可知直線方程為y=-x,那么可知x軸正方向?yàn)闃O軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為,可知圓心為(0,1),半徑為1,則利用圓心到直線的距離 ,則可知直線與圓相交,故有兩個公共點(diǎn),故填寫2.
點(diǎn)評:本題主要考查把參數(shù)方程化為普通方程的方法,把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系的判定,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓正半軸、正半軸的交點(diǎn)分別為,動點(diǎn)是橢圓上任一點(diǎn),求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線 (為參數(shù)),與曲線交于兩點(diǎn),是平面內(nèi)的一個定點(diǎn),則             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線,當(dāng)時直線上的點(diǎn)的坐標(biāo)是_______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線直線
將直線的極坐標(biāo)方程和曲線的參數(shù)方程分別化為直角坐標(biāo)方程和普通方程;
設(shè)點(diǎn)P在曲線C上,求點(diǎn)P到直線的距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(考生注意:只能從A,B,C中選擇一題作答,并將答案填寫在相應(yīng)字母后的橫線上,若多做,則按所做的第一題評閱給分.)
A.選修4-1:幾何證明選講
已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD的值為____.

B.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知圓與直線相切,求實(shí)數(shù)a的值______.
C.選修4-5:不等式選講
不等式對任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
在極坐標(biāo)系中,點(diǎn)坐標(biāo)是,曲線的方程為;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,斜率是的直線經(jīng)過點(diǎn)
(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)求證直線和曲線相交于兩點(diǎn),并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的漸近線與圓相切,則= (    )
A.B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

參數(shù)方程為參數(shù))化為普通方程為(    )
A.y=x-2B.y=x+2C.y=x-2()D.y=x+2()

查看答案和解析>>

同步練習(xí)冊答案