【題目】已知集合 ,B={x|2<x<9}.
(1)分別求:R(A∩B),(RB)∪A;
(2)已知C={x|2a<x<a+3},若CB,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:集合
={x| }
={x|3≤x<6},
B={x|2<x<9},
∴A∩B={x|3≤x<6},
∴CR(A∩B)={x|x<3或x≥6};
CRB={x|x≤2或x≥9},
∴(CRB)∪A={x|x≤2或3≤x<6或x≥9}
(2)解:當(dāng)C=時(shí),2a≥a+3,解得a≥3;
當(dāng)C≠時(shí), ,
解得 ,
即1≤a<3;
綜上,a≥1
【解析】(1)化簡(jiǎn)集合A,根據(jù)交集、補(bǔ)集與并集的定義進(jìn)行計(jì)算即可;(2)根據(jù)題意,討論C=和C≠時(shí),求出對(duì)應(yīng)a的取值范圍.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí)可以得到問題的答案,需要掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(1,2)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點(diǎn),數(shù)列{an}的前n項(xiàng)和Sn=f(n)﹣1.
求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 的定義域?yàn)榧螦,B={x∈Z|2<x<10},C={x∈R|x<a或x>a+1}
(1)求A,(RA)∩B;
(2)若A∪C=R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的左右焦點(diǎn)F1、F2 , 離心率為 ,雙曲線方程為 =1(a>0,b>0),直線x=2與雙曲線的交點(diǎn)為A、B,且|AB|= .
(Ⅰ)求橢圓與雙曲線的方程;
(Ⅱ)過點(diǎn)F2的直線l與橢圓交于M、N兩點(diǎn),交雙曲線與P、Q兩點(diǎn),當(dāng)△F1MN(F1為橢圓的左焦點(diǎn))的內(nèi)切圓的面積取最大值時(shí),求△F1PQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是拋物線的焦點(diǎn), 若點(diǎn)在上,且.
(1)求的值;
(2)若直線經(jīng)過點(diǎn)且與交于(異于)兩點(diǎn), 證明: 直線與直線的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為備戰(zhàn)年瑞典乒乓球世界錦標(biāo)賽,乒乓球隊(duì)舉行公開選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現(xiàn)甲、乙、丙三人進(jìn)行隊(duì)內(nèi)單打?qū)贡荣,每(jī)扇吮荣愐粓?chǎng),共賽三場(chǎng),每場(chǎng)比賽勝者得分,負(fù)者得分,在每一場(chǎng)比賽中,甲勝乙的概率為,丙勝甲的概率為,乙勝丙的概率為,且各場(chǎng)比賽結(jié)果互不影響.若甲獲第一名且乙獲第三名的概率為.
(Ⅰ)求的值;
(Ⅱ)設(shè)在該次對(duì)抗比賽中,丙得分為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若Sn=cos +cos +…+cos (n∈N+),則在S1 , S2 , …,S2015中,正數(shù)的個(gè)數(shù)是( )
A.882
B.756
C.750
D.378
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com