【題目】某省高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(170.5,16).現(xiàn)從某學(xué)校高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于157.5cm和187.5cm之間,將測(cè)量結(jié)果按如下方式分成6組:第1組[157.5,162.5),第2組[162.5,167.5),…,第6組[182.5,187.5],如圖是按上述分組方法得到的頻率分布直方圖.

(1)試評(píng)估該校高三年級(jí)男生的平均身高;
(2)求這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(3)在這50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全省前130名的人數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ~N(μ,σ2),則P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544,P(μ﹣3σ<ξ≤μ+3σ)=0.9974.

【答案】
(1)解:根據(jù)頻率分布直方圖,得我校高三年級(jí)男生平均身高為 =160×0.02×5+165×0.04×5+170×0.06×5+175×0.04×5+180×0.02×5+185×0.02×5=171.5,

∴高于全市的平均值170.5;


(2)解:由頻率分布直方圖知,后兩組頻率為0.2,

∴人數(shù)為0.2×50=10,

即這50名男生身高在177.5cm以上(含177.5 cm)的人數(shù)為10人;


(3)解:∵P(170.5﹣3×4<ξ≤170.5+3×4)=0.9974,

∴P(ξ≥182.5)= =0.0013,

∴0.0013×100 000=130,

全省前130名的身高在182.5 cm以上,這50人中182.5 cm以上的有5人;

∴隨機(jī)變量ξ可取0,1,2,于是

P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= =,

∴Eξ=0× +1× +2× =1.


【解析】(1)計(jì)算平均身高用組中值×頻率,即可得到結(jié)論;(2)先理解頻率分布直方圖橫縱軸表示的意義,橫軸表示身高,縱軸表示頻數(shù),即每組中包含個(gè)體的個(gè)數(shù);
根據(jù)頻數(shù)分布直方圖,了解數(shù)據(jù)的分布情況,知道每段所占的比例,從而求出這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);(III)先根據(jù)正態(tài)分布的規(guī)律求出全市前130名的身高在182.5cm以上的50人中的人數(shù),確定ξ的可能取值,求出其概率,即可得到ξ的分布列與期望.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識(shí),掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息,以及對(duì)離散型隨機(jī)變量及其分布列的理解,了解在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣2ax+1+b(a>0)
(1)若f(x)在區(qū)間[2,3]上的最大值為4、最小值為1,求a,b的值;
(2)若a=1,b=1,關(guān)于x的方程f(|2x﹣1|)+k(4﹣3|2x﹣1|)=0,有3個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,已知AB=15,BC=14,CA=13.將△ABC沿BC邊上的高AD折成一個(gè)如圖②所示的四面體A﹣BCD,使得圖②中的BC=11.

(1)求二面角B﹣AD﹣C的平面角的余弦值;
(2)在四面體A﹣BCD的棱AD上是否存在點(diǎn)P,使得 =0?若存在,請(qǐng)指出點(diǎn)P的位置;若不存在,請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)隨機(jī)變量x,y的取值表為

x

0

1

3

4

y

2.2

4.3

4.8

6.7

若x,y具有線性相關(guān)關(guān)系,且 = x+2.6,則下列四個(gè)結(jié)論錯(cuò)誤的是(
A.x與y是正相關(guān)
B.當(dāng)x=6時(shí),y的估計(jì)值為8.3
C.x每增加一個(gè)單位,y增加0.95個(gè)單位
D.樣本點(diǎn)(3,4.8)的殘差為0.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)與點(diǎn)的距離比它的直線的距離小2

1)求點(diǎn)的軌跡方程;

2是點(diǎn)軌跡上互相垂直的兩條弦,問:直線是否經(jīng)過軸上一定點(diǎn),若經(jīng)過,求出該點(diǎn)坐標(biāo);若不經(jīng)過,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位建立坐標(biāo)系,已知直線l的極坐標(biāo)方程為2ρcosθ+ρsinθ=3,曲線C的參數(shù)方程為 (α為參數(shù)).
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)P(1,1),設(shè)直線l與曲線C相交于A、B兩點(diǎn),求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) ,

(1),且對(duì),函數(shù)的值域?yàn)?/span>,求的表達(dá)式;

(2)在(1)的條件下,函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(3)設(shè),,為偶函數(shù),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).

(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;

(2)當(dāng)p=1時(shí),若拋物線C上存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)P和Q.求線段PQ的中點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案