(本小題滿分13分)
已知圓的圓心為,圓:的圓心為,一動(dòng)圓與圓內(nèi)切,與圓外切.
(Ⅰ)求動(dòng)圓圓心的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點(diǎn),使得為鈍角?若存在,求出點(diǎn)橫坐標(biāo)的取值范圍;若不存在,說明理由.
解: (Ⅰ)設(shè)動(dòng)圓P的半徑為r,則
兩式相加得|PM|+|PN|=4>|MN|
由橢圓定義知,點(diǎn)P的軌跡是以M、N為焦點(diǎn),焦距為,實(shí)軸長(zhǎng)為4的橢圓
其方程為 …………………………………………………………6分
(Ⅱ)假設(shè)存在,設(shè)(x,y).則因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/af/6/f0pwr1.gif" style="vertical-align:middle;" />為鈍角,所以
,,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ed/f/f5dla.gif" style="vertical-align:middle;" />點(diǎn)在橢圓上,所以
聯(lián)立兩式得:化簡(jiǎn)得:,
解得:,所以存在。………………………………………………… 13分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
一動(dòng)圓與圓外切,與圓內(nèi)切.
(I)求動(dòng)圓圓心M的軌跡方程.(II)試探究圓心M的軌跡上是否存在點(diǎn),使直線與的斜率?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題共9分)如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點(diǎn)P為線段CA(不包括端點(diǎn))上的一個(gè)動(dòng)點(diǎn),以為圓心,1為半徑作.
(1)連結(jié),若,試判斷與直線AB的位置關(guān)系,并說明理由;
(2)當(dāng)線段PC等于多少時(shí),與直線AB相切?
(3)當(dāng)與直線AB相交時(shí),寫出線段PC的取值范圍。
(第(3)問直接給出結(jié)果,不需要解題過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:x2+y2=r2(r>0)經(jīng)過點(diǎn)(1,).
(1)求圓C的方程;
(2)是否存在經(jīng)過點(diǎn)(-1,1)的直線l,它與圓C相交于A,B兩個(gè)不同點(diǎn),且滿足=+(O為坐標(biāo)原點(diǎn))關(guān)系的點(diǎn)M也在圓C上?如果存在,求出直線l的方程;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)雙曲線的一條漸近線與拋物線y=x2+1只有一個(gè)公共點(diǎn),則雙曲線的離心率為( 。
A. | B.5 | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com