(B題)已知圓C的方程為(x-1)2+y2=9,點(diǎn)p為圓上一動(dòng)點(diǎn),定點(diǎn)A(-1,0),線段AP的垂直平分線與直線CP交于點(diǎn)M,則為點(diǎn)M的軌跡為( 。
A.橢圓B.雙曲線C.拋物線D.圓
圓C:(x-1)2+y2=9,圓心為(1,0),半徑為3,如圖,
因?yàn)镸是線段AP的垂直平分線與CP的交點(diǎn),所以|MA|=|MP|,
所以|MA|+|MC|=|MC|+|MP|=|PC|=3.
而|AC|=2,|MA|+|MC|>|AC|.
所以由橢圓定義知,M的軌跡是以A,C為焦點(diǎn)的橢圓.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的焦點(diǎn)為,點(diǎn)P為其上的動(dòng)點(diǎn),當(dāng)為鈍角時(shí),點(diǎn)P橫坐標(biāo)的取值范圍是_________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)定點(diǎn)M1(0,-3),M2(0,3),動(dòng)點(diǎn)P滿足條件|PM1|+|PM2|=a+
9
a
(其中a是正常數(shù)),則點(diǎn)P的軌跡是(  )
A.橢圓B.線段C.橢圓或線段D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1、F2是兩定點(diǎn),|F1F2|=4,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=4,則動(dòng)點(diǎn)M的軌跡是( 。
A..橢圓B.直線C.圓D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn),
(1)設(shè)橢圓C上的點(diǎn)(
3
,
3
2
)到F1,F(xiàn)2兩點(diǎn)距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo)
(2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段KF1的中點(diǎn)B的軌跡方程
(3)設(shè)點(diǎn)P是橢圓C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPM,KPN試探究kPM•KPN的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求適合下列條件的曲線的標(biāo)準(zhǔn)方程:
(1)a=3b,經(jīng)過(guò)點(diǎn)M(3,0)的橢圓;
(2)a=2
5
,經(jīng)過(guò)點(diǎn)N(2,-5),焦點(diǎn)在y軸上的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(Ⅰ)求經(jīng)過(guò)點(diǎn)(-
3
2
,
5
2
),且與橢圓9x2+5y2=45有共同焦點(diǎn)的橢圓方程;
(Ⅱ)已知橢圓以坐標(biāo)軸為對(duì)稱軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,點(diǎn)P(3,0)在該橢圓上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

△ABC中,BC=7,AC=3,∠A=120°,求以點(diǎn)B、C為焦點(diǎn)且過(guò)點(diǎn)A的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是橢圓上的一個(gè)點(diǎn),是橢圓的焦點(diǎn),如果點(diǎn)到點(diǎn)的距離是,那么點(diǎn)到點(diǎn)的距離是            。

查看答案和解析>>

同步練習(xí)冊(cè)答案