【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
【答案】B
【解析】解:∵y=f(x+2)為偶函數(shù),∴y=f(x+2)的圖象關(guān)于x=0對(duì)稱
∴y=f(x)的圖象關(guān)于x=2對(duì)稱
∴f(4)=f(0)
又∵f(4)=1,∴f(0)=1
設(shè)g(x)= (x∈R),則g′(x)= =
又∵f′(x)<f(x),∴f′(x)﹣f(x)<0
∴g′(x)<0,∴y=g(x)在定義域上單調(diào)遞減
∵f(x)<ex
∴g(x)<1
又∵g(0)= =1
∴g(x)<g(0)
∴x>0
故選B.
構(gòu)造函數(shù)g(x)= (x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.函數(shù)f(x)=ex+x2+x+1與g(x)的圖象關(guān)于直線2x﹣y﹣3=0對(duì)稱,P,Q分別是函數(shù)f(x),g(x)圖象上的動(dòng)點(diǎn),則|PQ|的最小值為__
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,若, 與軸垂直,且.
(1)求橢圓方程;
(2)過(guò)點(diǎn)且不垂直于坐標(biāo)軸的直線與橢圓交于兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿足的直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}定義為a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)當(dāng)a>0時(shí),定義數(shù)列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整數(shù)i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一組(i,j),如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域.
(2)對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 向量 =(Sn , 1), =(2n﹣1, ),滿足條件 ∥ ,
(1)求數(shù)列{an}的通項(xiàng)公式,
(2)設(shè)函數(shù)f(x)=( )x , 數(shù)列{bn}滿足條件b1=1,f(bn+1)= .
①求數(shù)列{bn}的通項(xiàng)公式,
②設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,是中點(diǎn).
(1)求點(diǎn)到平面的距離;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a+b=1,對(duì)a,b∈(0,+∞), + ≥|2x﹣1|﹣|x+1|恒成立,
(1)求 + 的最小值;
(2)求x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com