【題目】已知A={x|x+1>0},B={﹣2,﹣1,0,1},則(RA)∩B=(  )
A.{﹣2,﹣1}
B.{﹣2}
C.{﹣2,0,1}
D.{0,1}

【答案】A
【解析】解:∵A={x|x+1>0}={x|x>﹣1},
∴CUA={x|x≤﹣1},
∴(RA)∩B={x|x≤﹣1}∩{﹣2,﹣1,0,1}={﹣2,﹣1}
故選A.
【考點精析】本題主要考查了交、并、補集的混合運算的相關(guān)知識點,需要掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】命題“若x>﹣3,則x>﹣6”以及它的逆命題、否命題、逆否命題中,真命題有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x||x﹣a|<1,x∈R},B={x||x﹣b|>2,x∈R}.若AB,則實數(shù)a,b必滿足(  )
A.|a+b|≤3
B.|a+b|≥3
C.|a﹣b|≤3
D.|a﹣b|≥3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:f(x)>1﹣f′(x),f(0)=0,f′(x)是f(x)的導函數(shù),則不等式exf(x)>ex﹣1(其中e為自然對數(shù)的底數(shù))的解集為(
A.(﹣∞,﹣1)∪(0,+∞)
B.(0,+∞)
C.(﹣∞,0)∪(1,+∞)
D.(﹣1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|.
(1)求不等式f(x)+x2﹣4>0的解集;
(2)設g(x)=﹣|x+7|+3m,若關(guān)于x的不等式f(x)<g(x)的解集非空,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列{an}中,“a4 , a12是方程x2+3x+1=0的兩根”是“a8=±1”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果U={1,2,3,4,5},M={1,2,3},N={2,3,5},那么(CUM)∩N等于( 。
A.φ
B.{1,3}
C.{4}
D.{5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=(x+1)(x﹣1)在x=1處的導數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=Z,集合A={3,4},A∪B={1,2,3,4},那么(UA)∩B=(
A.{1,2}
B.{3,4}
C.{1,2,3,4}
D.

查看答案和解析>>

同步練習冊答案