【題目】已知P,A,B,C是半徑為2的球面上的點,PA=PB=PC=2,,點BAC上的射影為D,則三棱錐體積的最大值為( )

A.B.C.D.

【答案】D

【解析】

先畫出圖形(見解析),求出三棱錐的高,由題意得出三棱錐體積最大時面積最大,進而求出的面積表達式,利用函數(shù)知識求出面積最大值,從而求出三棱錐體積最大值.

如下圖,由題意,,

的中點為,則為三角形的外心,且為在平面上的射影,所以球心在的延長線上,設,則

所以,即,所以.

,

,設(),則,

,則,故,

所以,則,

所以的面積,

,則,

因為,所以當時,,即此時單調遞增;當時,,此時單調遞減.

所以當時,取到最大值為,即的面積最大值為

的面積最大時,三棱錐體積取得最大值為.

故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的公差不為零,且,、、成等比數(shù)列,數(shù)列滿足

1)求數(shù)列、的通項公式;

2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某銷售公司在當?shù)?/span>、兩家超市各有一個銷售點,每日從同一家食品廠一次性購進一種食品,每件200元,統(tǒng)一零售價每件300元,兩家超市之間調配食品不計費用,若進貨不足食品廠以每件250元補貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購進食品數(shù)量,為此搜集并整理了、兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):

銷售件數(shù)

8

9

10

11

頻數(shù)

20

40

20

20

以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),表示銷售公司每日共需購進食品的件數(shù).

(1)求的分布列;

(2)以銷售食品利潤的期望為決策依據(jù),在之中選其一,應選哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,右焦點為,斜率為1的直線與橢圓交于兩點,且,其中為坐標原點.

1)求橢圓的標準方程;

2)設過點且與直線平行的直線與橢圓交于,兩點,若點滿足,且與橢圓的另一個交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中有一個“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦?shù)拈L度各是多少?假設,現(xiàn)有下述四個結論:

①水深為12尺;②蘆葦長為15尺;③;④.

其中所有正確結論的編號是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)若存在極小值,求實數(shù)的取值范圍;

(2)設的極小值點,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)把曲線向下平移個單位,然后各點橫坐標變?yōu)樵瓉淼?/span>倍得到曲線(縱坐標不變),設點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)求曲線與曲線兩交點所在直線的極坐標方程;

(2)若直線的極坐標方程為,直線軸的交點為,與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,離心率是橢圓的左頂點,是橢圓的左焦點,,直線.

(1)求橢圓方程;

(2)直線過點與橢圓交于、兩點,直線、分別與直線交于、兩點,試問:以為直徑的圓是否過定點,如果是,請求出定點坐標;如果不是,請說明理由.

查看答案和解析>>

同步練習冊答案