精英家教網(wǎng)對于任意實數(shù)a,b,定義min{a,b}=
a,a≤b
b,a>b.
設函數(shù)f(x)=-x+3,g(x)=log2x,則函數(shù)h(x)=min{f(x),g(x)}的最大值是
 
分析:分別作出函數(shù)f(x)=-3+x和g(x)=log2x的圖象,結合函數(shù)f(x)=-3+x和g(x)=log2x的圖象可知,在這兩個函數(shù)的交點處函數(shù)h(x)=min{f(x),g(x)}的最大值.
解答:精英家教網(wǎng)解:∵x>0,∴f(x)=-x+3<3,g(x)=log2x∈R,分別作出函數(shù)f(x)=-3+x和g(x)=log2x的圖象,
結合函數(shù)f(x)=-3+x和g(x)=log2x的圖象可知,
h(x)=min{f(x),g(x)}的圖象,精英家教網(wǎng)
在這兩個函數(shù)的交點處函數(shù)h(x)=min{f(x),g(x)}的最大值.
解方程組
y=-x+3
y=log2x
x=2
y=1

∴函數(shù)h(x)=min{f(x),g(x)}的最大值是1.
故答案是1.
點評:數(shù)形結合是求解這類問題的有效方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有以下四個命題:
①對于任意實數(shù)a、b、c,若a>b,c≠0,則ac>bc;
②設Sn 是等差數(shù)列{an}的前n項和,若a2+a6+a10為一個確定的常數(shù),則S11也是一個確定的常數(shù);
③關于x的不等式ax+b>0的解集為(-∞,1),則關于x的不等式
bx-ax+2
>0的解集為(-2,-1);
④對于任意實數(shù)a、b、c、d,若a>b>0,c>d則ac>bd.
其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義在(0,+∞)上的函數(shù)f(x)滿足以下條件:①對于任意實數(shù)a,b,都有f(a•b)=f(a)+f(b)-p,其中p是正實數(shù);②f(2)=p-1;(2)③x>1時,總有f(x)<p
(1)求f(1)及f(
12
)
的值(寫成關于p的表達式);
(2)求證:f(x)在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果對于任意實數(shù)a,b(a<b),隨機變量X滿足P(a<X≤b)=
b
a
?μ,σ(x)dx
,稱隨機變量X服從正態(tài)分布,記為N(μ,σ2),若X~(0,1),P(X>1)=p,則
0
-1
?μ,σ(x)dx
=
1
2
-p
1
2
-p

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)設定義在(0,+∞)上的函數(shù)f(x)滿足:①對于任意實數(shù)a,b都有f(ab)=f(a)+f(b)-5;②f(2)=4.則f(1)=
5
5
;若an=f(2n)(n∈N*),數(shù)列{an}的前項和為Sn,則Sn的最大值是
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-ln(
x2+1
-x)
,則對于任意實數(shù)a,b(a+b≠0),
f(a)+f(b)
a+b
的值(  )

查看答案和解析>>

同步練習冊答案