設(shè)f(x)=
sinπx,(x<0)
f(x-1)+1(x≥0)
g(x)=
cosπx,(x<
1
2
)
g(x-1)+1(x≥
1
2
)
,則f(
1
3
)+g(
5
6
)
=
2
2
分析:分段函數(shù)的求值問(wèn)題,必須分段考慮,由于
1
3
>0,
5
6
1
2
,故利用下面一個(gè)式子求解.
解答:解:因?yàn)?
1
3
>0,
5
6
1
2
,
所以:f(
1
3
)=f(
1
3
-1)+1=f(-
2
3
)+1=sin(-
3
)+1=1-
3
2

g(
5
6
)=g(
5
6
-1)+1=g(-
1
6
)+1=cos(-
π
6
)+1=
3
2
+1.
∴f(
1
3
)+g(
5
6
)=2.
故答案為2.
點(diǎn)評(píng):本題考查了分段函數(shù)的定義,求分段函數(shù)函數(shù)值的方法,解題時(shí)要認(rèn)真細(xì)致,準(zhǔn)確運(yùn)算.分段函數(shù)是指在定義域的不同階段上對(duì)應(yīng)法則不同,因此分段函數(shù)求函數(shù)值時(shí),一定要看清楚自變量所處階段.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=sin(2x+
π
6
)+2msinxcosx,x∈R

(1)當(dāng)m=0時(shí),求f(x)在[0,
π
3
]
內(nèi)的最小值及相應(yīng)的x的值;
(2)若f(x)的最大值為
1
2
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
sin(
π
2
x+
π
4
)
(x≤2008)
f(x-5)(x>2008)
,則f(2007)+f(2008)+f(2009)+f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
sinπx(x<0)
f(x-1)+1(x≥0)
,g(x)=
cosπx(x<
1
2
)
g(x-1)+1(x≥
1
2
)
,則g(
1
4
)+f(
1
3
)+g(
5
6
)+f(
3
4
)
的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案