(文)橢圓上存在一點(diǎn)P,使得點(diǎn)P到兩焦點(diǎn)距離比為1:2,則橢圓離心率取值范圍為
[
1
3
,1)
[
1
3
,1)
分析:設(shè)橢圓上點(diǎn)P到兩焦點(diǎn)F1、F2距離比為1:2,則PF1=r,PF2=2r,可得2a=PF1+PF2=3r.再由橢圓上動(dòng)點(diǎn)P滿足|PF1-PF2|≤2c,可得
2
3
a≤6c,最后結(jié)合橢圓的離心率滿足0<e<1,得到該橢圓的離心率e的取值范圍.
解答:解:設(shè)橢圓的兩焦點(diǎn)分別為F1、F2,
∵點(diǎn)P到兩焦點(diǎn)F1、F2距離比為1:2,
∴設(shè)PF1=r,則PF2=2r,可得2a=PF1+PF2=3r,r=
2
3
a
∵|PF1-PF2|=r≤2c,(當(dāng)P點(diǎn)在F2F1延長(zhǎng)線上時(shí),取等號(hào))
2
3
a≤2c,所以橢圓離心率e=
c
a
1
3

又∵橢圓的離心率滿足0<e<1,
∴該橢圓的離心率e∈[
1
3
,1)

故答案為:[
1
3
,1)
點(diǎn)評(píng):本題在已知橢圓上動(dòng)點(diǎn)到橢圓兩個(gè)焦點(diǎn)距離之比等于1:2的情況下,求橢圓的離心率,著重考查了橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•楊浦區(qū)二模)(文)設(shè)F1、F2分別為橢圓C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到兩個(gè)焦點(diǎn)的距離之和等于4,求橢圓C的方程.
(2)如果點(diǎn)P是(1)中所得橢圓上的任意一點(diǎn),且
PF1
PF2
=0
,求△PF1F2的面積.
(3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點(diǎn)Q位置無(wú)關(guān)的定值.試問(wèn):雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過(guò)對(duì)上面問(wèn)題進(jìn)一步研究,請(qǐng)你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012年四川省成都市高二上學(xué)期期中考試數(shù)學(xué) 題型:填空題

(文)橢圓上存在一點(diǎn)P,使得點(diǎn)P到兩焦點(diǎn)距離比為1:2,則橢圓離心率取值范圍為_(kāi)____

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:楊浦區(qū)二模 題型:解答題

(文)設(shè)F1、F2分別為橢圓C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到兩個(gè)焦點(diǎn)的距離之和等于4,求橢圓C的方程.
(2)如果點(diǎn)P是(1)中所得橢圓上的任意一點(diǎn),且
PF1
PF2
=0
,求△PF1F2的面積.
(3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點(diǎn)Q位置無(wú)關(guān)的定值.試問(wèn):雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過(guò)對(duì)上面問(wèn)題進(jìn)一步研究,請(qǐng)你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省成都市新都區(qū)香城中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

(文)橢圓上存在一點(diǎn)P,使得點(diǎn)P到兩焦點(diǎn)距離比為1:2,則橢圓離心率取值范圍為   

查看答案和解析>>

同步練習(xí)冊(cè)答案