(文)設F1、F2分別為橢圓C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到兩個焦點的距離之和等于4,求橢圓C的方程.
(2)如果點P是(1)中所得橢圓上的任意一點,且
PF1
PF2
=0
,求△PF1F2的面積.
(3)若橢圓C具有如下性質:設M、N是橢圓C上關于原點對稱的兩點,點Q是橢圓上任意一點,且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點Q位置無關的定值.試問:雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有類似的性質?并證明你的結論.通過對上面問題進一步研究,請你概括具有上述性質的二次曲線更為一般的結論,并說明理由.
(1)當m>n時,由橢圓定義得 2m=4,∴m=2(2分)
又點A(1,
3
2
)在橢圓上  所以
1
m2
+
9
4
n2
=1, ∴ n2=3

x2
4
+
y2
3
=1
 (3分)
同理,當m<n時,橢圓方程
x2
3
+
y2
4
=1
 (4分)
(2)當m>n時,由橢圓定義得 PF1+PF2=2m,PF12+PF22=4
解得  PF1PF2=6             (8分)
所以△PF1F2的面積為3
同理,當m<n時,△PF1F2的面積也為3   (10分)
(3)設M,N是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)上關于原點對稱的兩點,點Q是橢圓上任意一點,且直線QM與直線QN的斜率都存在,分別記為KQM,KQN,那么KQM,KQN之積是與點Q位置無關的定值.
設點M(x1,y1),N(-x1,-y1).Q(x0,y0
 x12
a2
-
y12
b2
=1
x02
a2
-
y02
b2
=1

作差得
(y1-y0)(y1+y0)
(x1-x0)(x1+x0)
=
b2
a2
(12分)
所以KQMKQN=
b2
a2
(14分)
設M,N是二次曲線mx2+ny2=1上關于原點對稱的兩點,點Q是二次曲線上任意一點,且直線QM與直線QN的斜率都存在,分別記為KQM,KQN,
那么KQMKQN=-
m
n
     (15分)
證明  設點點M(x1,y1),N(-x1,-y1).Q(x0,y0
則mx12+ny12=1,mx02+ny02=1
作差得
(y1-y0)(y1+y0)
(x1-x0)(x1+x0)
=-
m
n
KQMKQN=-
m
n
  (18分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文)設P是雙曲線
x2
a2
-
y2
9
=1
上一點,雙曲線的一條漸近線方程為3x-2y=0,F(xiàn)1、F2分別是雙曲線左右焦點.若|PF1|=5,則|PF2|=( 。
A、3或7B、1或9C、7D、9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(文)設P是雙曲線
x2
a2
-
y2
9
=1
上一點,雙曲線的一條漸近線方程為3x-2y=0,F(xiàn)1、F2分別是雙曲線左右焦點.若|PF1|=5,則|PF2|=( 。
A.3或7B.1或9C.7D.9

查看答案和解析>>

科目:高中數(shù)學 來源:2006-2007學年浙江省寧波市八校聯(lián)考高二(上)數(shù)學試卷(解析版) 題型:選擇題

(文)設P是雙曲線上一點,雙曲線的一條漸近線方程為3x-2y=0,F(xiàn)1、F2分別是雙曲線左右焦點.若|PF1|=5,則|PF2|=( )
A.3或7
B.1或9
C.7
D.9

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年浙江省紹興一中高二(上)期末數(shù)學試卷(文科)(解析版) 題型:選擇題

(文)設P是雙曲線上一點,雙曲線的一條漸近線方程為3x-2y=0,F(xiàn)1、F2分別是雙曲線左右焦點.若|PF1|=5,則|PF2|=( )
A.3或7
B.1或9
C.7
D.9

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年浙江省紹興一中高二(上)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

(文)設P是雙曲線上一點,雙曲線的一條漸近線方程為3x-2y=0,F(xiàn)1、F2分別是雙曲線左右焦點.若|PF1|=5,則|PF2|=( )
A.3或7
B.1或9
C.7
D.9

查看答案和解析>>

同步練習冊答案