現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖所示,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為;類(lèi)比到空間,有兩個(gè)棱長(zhǎng)均為的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為       

解析試題分析:結(jié)合空間正方體的結(jié)構(gòu)特征,即可類(lèi)比推理出兩個(gè)兩個(gè)正方體重疊部分的體積,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為;類(lèi)比到空間,有兩個(gè)棱長(zhǎng)均為的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為
考點(diǎn):類(lèi)比推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

用反證法證明命題:“如果,可被整除,那么中至少有一個(gè)能被整除”時(shí),假設(shè)的內(nèi)容應(yīng)為_(kāi)___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知,,,, ,由此你猜想出第n個(gè)數(shù)為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

黑白兩種顏色的正六形地面磚塊按如圖的規(guī)律拼成若干個(gè)圖案,則第4個(gè)圖案中有白色地面磚________________塊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1955年,印度數(shù)學(xué)家卡普耶卡(D.R.Kaprekar)研究了對(duì)四位自然數(shù)的一種交換:任給出四位數(shù),用的四個(gè)數(shù)字由大到小重新排列成一個(gè)四位數(shù)m,再減去它的反序數(shù)n(即將的四個(gè)數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運(yùn)算,比如0001,計(jì)算時(shí)按1計(jì)算),得出數(shù),然后繼續(xù)對(duì)重復(fù)上述變換,得數(shù),…,如此進(jìn)行下去,卡普耶卡發(fā)現(xiàn),無(wú)論是多大的四位數(shù),只要四個(gè)數(shù)字不全相同,最多進(jìn)行k次上述變換,就會(huì)出現(xiàn)變換前后相同的四位數(shù)t(這個(gè)數(shù)稱(chēng)為Kaprekar變換的核).通過(guò)研究10進(jìn)制四位數(shù)2014可得Kaprekar變換的核為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

將石子擺成如下圖的梯形形狀.稱(chēng)數(shù)列為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,判斷數(shù)列的第項(xiàng)______________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若等差數(shù)列的首項(xiàng)為公差為,前項(xiàng)的和為,則數(shù)列為等差數(shù)列,且通項(xiàng)為.類(lèi)似地,請(qǐng)完成下列命題:若各項(xiàng)均為正數(shù)的等比數(shù)列的首項(xiàng)為,公比為,前項(xiàng)的積為,則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

平面內(nèi)有條直線,其中任何兩條不平行,任何三條不共點(diǎn),當(dāng)時(shí)把平面分成的區(qū)域數(shù)記為,則時(shí)     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

用數(shù)學(xué)歸納法證明不等式+…+>的過(guò)程中,由n=k推導(dǎo)n=k+1時(shí),不等式的左邊增加的式子是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案