【題目】超市某種綠色食品,過(guò)去20個(gè)月該食品的月市場(chǎng)需求量(單位: )即每月銷(xiāo)售的數(shù)據(jù)記錄如下:

137 108 114 121 115 135 122 140 128 139

125 140 130 125 105 115 133 124 149 115

對(duì)這20個(gè)數(shù)據(jù)按組距10進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:

(Ⅰ)寫(xiě)出, 的值.若視分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,試計(jì)算;

(Ⅱ)記組月市場(chǎng)需求量數(shù)據(jù)的平均數(shù)與方差分別為, , 組月市場(chǎng)需求量數(shù)據(jù)的平均數(shù)與方差分別為, ,試分別比較, 的大;(只需寫(xiě)出結(jié)論)

(Ⅲ)為保證該綠色產(chǎn)品的質(zhì)量,超市規(guī)定該產(chǎn)品僅在每月一日上架銷(xiāo)售,每月最后一日對(duì)所有未售出的產(chǎn)品進(jìn)行下架處理.若超市每售出該綠色食品可獲利潤(rùn)5元,未售出的食品每虧損3元,并且超市為下一個(gè)月采購(gòu)了該綠色食品,求超市下一個(gè)月銷(xiāo)售該綠色食品的利潤(rùn)的分布列及數(shù)學(xué)期望.(以分組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以月市場(chǎng)需求量落入該區(qū)間的頻率作為月市場(chǎng)需求量取該組區(qū)間中點(diǎn)值的概率)

【答案】(1) ;(2) , ;(3)的分布列為

(元).

【解析】試題分析:(Ⅰ)根據(jù)原始數(shù)據(jù)統(tǒng)計(jì),可得, 的值,根據(jù)古典概型概率公式及互斥事件的概率可得的值;(Ⅱ)觀(guān)察所給數(shù)據(jù)的分散與集中程度可得結(jié)果;(Ⅲ)隨機(jī)變量可取的值為 ,利用古典概型概率公式分別算出各隨機(jī)變量對(duì)應(yīng)的概率,可得分布列,進(jìn)而利用期望公式可得結(jié)果.

試題解析:(Ⅰ) ,

(Ⅱ), ;

(Ⅲ)由題意可知:利潤(rùn)

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí), ;

當(dāng)時(shí), .

所以的可能取值為450,530,610,650,

; ;

; .

所以的分布列為

所以 (元)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn= n2+ n(n∈N*),數(shù)列{bn}是首項(xiàng)為4的正項(xiàng)等比數(shù)列,且2b2 , b3﹣3,b2+2成等差數(shù)列. (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=anbn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l經(jīng)過(guò)直線(xiàn)l1:2x﹣y﹣1=0與直線(xiàn)l2:x+2y﹣3=0的交點(diǎn)P,且與直線(xiàn)l3:x﹣y+1=0垂直.
(1)求直線(xiàn)l的方程;
(2)若直線(xiàn)l與圓C:(x﹣a)2+y2=8相交于P,Q兩點(diǎn),且 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O:x2+y2=2,直線(xiàn)l:y=kx﹣2.
(1)若直線(xiàn)l與圓O交于不同的兩點(diǎn)A,B,且 ,求k的值;
(2)若 ,P是直線(xiàn)l上的動(dòng)點(diǎn),過(guò)P作圓O的兩條切線(xiàn)PC,PD,切點(diǎn)分別為C,D,求證:直線(xiàn)CD過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)

(1)討論的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,則在不超過(guò)600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤(rùn)之和的最大值為元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x (m∈Z)為偶函數(shù),且在(0,+∞)上為增函數(shù).
(1)求m的值,并確定f(x)的解析式;
(2)若函數(shù)g(x)=loga(f(x)﹣ax+2)在區(qū)間(1,+∞)上恒為正值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了支持生物課程基地研究植物生長(zhǎng),計(jì)劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長(zhǎng)為x(m),三塊種植植物的矩形區(qū)域的總面積為S(m2).

(1)求S關(guān)于x的函數(shù)關(guān)系式;
(2)求S的最大值,及此時(shí)長(zhǎng)X的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是(
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案