【題目】平面直角坐標(biāo)系中,已知橢圓的離心率為,左右焦點(diǎn)分別為,以點(diǎn)為圓心,以為半徑的圓與以點(diǎn)為圓心,以為半徑的圓相交,且交點(diǎn)在橢圓上.

)求橢圓的方程.

)設(shè)橢圓 為橢圓上任意一點(diǎn),過點(diǎn)的直線交橢圓兩點(diǎn),射線交橢圓于點(diǎn)

①求的值.

②(理科生做)求面積的最大值.

③(文科生做)當(dāng)時(shí), 面積的最大值.

【答案】(1);(2)①2, ②(理)(文).

【解析】試題分析:()利用橢圓的定義進(jìn)行求解;()①設(shè)點(diǎn),利用點(diǎn)在橢圓上和三點(diǎn)共線進(jìn)行求解;②先利用點(diǎn)到直線的距離公式求得,再聯(lián)立直線和橢圓的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和弦長公式、三角形的面積公式進(jìn)行求解;③先利用點(diǎn)到直線的距離公式求得,再聯(lián)立直線和橢圓的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和弦長公式、三角形的面積公式進(jìn)行求解.

試題解析:()設(shè)兩圓的一個交點(diǎn)為,則, ,由在橢圓上可得,則 ,得,則,

故橢圓方程為

)①橢圓為方程為

設(shè),則有,

在射線上,設(shè)

代入橢圓可得,

解得,即,

②(理)由①可得中點(diǎn), 在直線上,則到直線的距離與到直線的距離相等,

,聯(lián)立,

可得,

,

聯(lián)立,得,

,

,

當(dāng)且僅當(dāng)時(shí)等號成立,

最大值為

②(文)此時(shí)直線方程為,由①可得的中點(diǎn),而在直線上,則到直線的距離與到直線的距離相等,則,聯(lián)立

可得,

, , ,

聯(lián)立,得,

最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 、、均為等邊三角形, .

(Ⅰ)求證: 平面;

(Ⅱ)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)的向量,滿足:,,且的夾角為,又,,則由滿足條件的點(diǎn)所組成的圖形面積是( )

A. 2 B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2﹣4ρsinθ+3=0,A、B兩點(diǎn)極坐標(biāo)分別為(1,π)、(1,0).
(1)求曲線C的參數(shù)方程;
(2)在曲線C上取一點(diǎn)P,求|AP|2+|BP|2的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2-1-lnx,其中aR.

(1)若a=0,求過點(diǎn)(0,-1)且與曲線yf(x)相切的直線方程;

(2)若函數(shù)f(x)有兩個零點(diǎn)x1,x2,

a的取值范圍;

求證:f ′(x1)+f ′(x2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的側(cè)面PAD是正三角形,底面ABCD為菱形,A點(diǎn)E為AD的中點(diǎn),若BE=PE.

(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=﹣x+1與橢圓C: =1(a>b>0))相交于不同的兩點(diǎn)A、B,且線段AB的中點(diǎn)P的坐標(biāo)為(

(1)求橢圓C離心率;
(2)設(shè)O為坐標(biāo)原點(diǎn),且2|OP|=|AB|,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表:

總計(jì)

愛好

40

20

60

不愛好

20

30

50

總計(jì)

60

50

110

算得,

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們?yōu)榱颂骄亢瘮?shù)的部分性質(zhì),先列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.004

4.02

4.04

4.3

5

5.8

7.57

觀察表中值隨值變化的特點(diǎn),完成以下的問題.

首先比較容易看得出來:此函數(shù)在區(qū)間上是遞減的;

(1)函數(shù)在區(qū)間 上遞增

當(dāng) 時(shí),= .

(2)請你根據(jù)上面性質(zhì)作出此函數(shù)的大概圖像;

(3)試用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上為減函數(shù).

查看答案和解析>>

同步練習(xí)冊答案