【題目】已知△ABC三邊長構成公差為d(d≠0)的等差數(shù)列,則△ABC最大內角α的取值范圍為(
A. <α≤
B. <α<π
C. ≤α<π
D. <α≤

【答案】B
【解析】解:∵α為△ABC最大內角,∴3α>π,
即α> ,
由題意,不妨設三角形三邊為a﹣d,a,a+d,(a>0,d>0),
則由余弦定理可得,cosα= = =2﹣ =2﹣ ,
又∵三角形兩邊之和大于第三邊,可得a﹣d+a>a+d,可得a>2d,即 ,
∴cosα=2﹣ >﹣1,
又α為三角形內角,α∈(0,π),
可得:α∈( ,π).
故選:B.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓的半徑為,,是圓上的一個動點,的中垂線于點,以直線軸,的中垂線為軸建立平面直角坐標系。

(Ⅰ)若點的軌跡為曲線,求曲線的方程;

(Ⅱ)設點為圓上任意一點,過作圓的切線與曲線交于兩點,證明:以為直徑的圓經(jīng)過定點,并求出該定點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域為R的函數(shù)f(x)= 是奇函數(shù).

(1)確定y=g(x),y=f(x)的解析式

(2)若h(x)=f(x)+a在(﹣1,1)上有零點,求a的取值范圍;

(3)若對任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|.
(1)解不等式:f(x+1)+f(x+2)<4;
(2)已知a>2,求證:x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在Rt△AOB中, ,斜邊AB=4,D是AB中點,現(xiàn)將Rt△AOB以直角邊AO為軸旋轉一周得到一個圓錐,點C為圓錐底面圓周上一點,且∠BOC=90°,
(1)求圓錐的側面積;
(2)求直線CD與平面BOC所成的角的大小;(用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面 平面分別是棱長為12的正三角形, // ,四邊形為直角梯形, // ,點的重心, 中點, .

)當時,求證: //平面

)若直線所成角為,試求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,過點作圓的切線,切點分別為.直線恰好經(jīng)過的右頂點和上頂點.

1)求橢圓的方程;

2)如圖,過橢圓的右焦點作兩條互相垂直的弦,

①設中點分別為,證明:直線必過定點,并求此定點坐標;

②若直線, 的斜率均存在時,求由四點構成的四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x3+ax2+bx(x>0)的圖像與x軸相切于M(3,0).
(1)求f(x)的解析式;
(2)是否存在兩個不等正數(shù)s,t(s<t),當x∈[s,t]時,函數(shù)f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有這樣的正數(shù)s,t,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】聯(lián)合國教科文組織規(guī)定,每年的4月23日是“世界讀書日”.某校研究生學習小組為了解本校學生的閱讀情況,隨機調查了本校400名學生在這一天的閱讀時間(單位:分鐘),將時間數(shù)據(jù)分成5組:,并整理得到如下頻率分布直方圖.

(1)求的值;

(2)試估計該學校所有學生在這一天的平均閱讀時間;

(3)若用分層抽樣的方法從這400名學生中抽取50人參加交流會,則在閱讀時間為的兩組中分別抽取多少人?

查看答案和解析>>

同步練習冊答案