【題目】已知數(shù)列的前n項(xiàng)和為,nN*).

1)證明數(shù)列是等比數(shù)列,求出數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列的前n項(xiàng)和;

3)數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項(xiàng);若不存在,說(shuō)明理由.

【答案】(1)證明見解析,;(2);(3)不存在滿足條件的三項(xiàng)

【解析】

1)由已知數(shù)列遞推式可得數(shù)列是等比數(shù)列,結(jié)合等比數(shù)列的通項(xiàng)公式求得數(shù)列的通項(xiàng)公式;

2)把數(shù)列的通項(xiàng)公式代入,然后利用錯(cuò)位相減法求數(shù)列的前項(xiàng)和;

3)假設(shè)存在,且,使得成等差數(shù)列,然后推出矛盾可得假設(shè)不成立,從而可得不存在滿足條件的三項(xiàng).

1)證明:∵,∴

,∴

,

∴數(shù)列是公比為2的等比數(shù)列,

,,則

;

2)解:

,

,①

,②

-②得,,

;

3)解:設(shè)存在,且,使得成等差數(shù)列,

,

,

為偶數(shù),為奇數(shù),

不成立,故不存在滿足條件的三項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定數(shù)列. 對(duì),該數(shù)列前項(xiàng)的最大值記為,后項(xiàng)的最小值記為.

(1)設(shè)數(shù)列為3,4,7,1. 寫出的值;

(2)設(shè)是公比大于的等比數(shù)列,且,證明是等比數(shù)列;

(3)若,證明是常數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=x2+ax+3

1)當(dāng)xR時(shí),fxa恒成立,求a的取值范圍.

2)當(dāng)a[46]時(shí),fx≥0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證:恒成立;

(2)若關(guān)于的方程至少有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市組織高三全體學(xué)生參加計(jì)算機(jī)操作比賽,等級(jí)分為110分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績(jī),得到樣本數(shù)據(jù)如下:

(1)計(jì)算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.

(2)A校樣本數(shù)據(jù)成績(jī)分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級(jí)的比賽,求這2人成績(jī)之和大于或等于15的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某港口水的深度是時(shí)間,單位:)的函數(shù),記作.下面是某日水深的數(shù)據(jù):

經(jīng)長(zhǎng)期觀察,的曲線可以近似地看成函數(shù)的圖象.一般情況下,船舶航行時(shí),船底離海底的距離為以上時(shí)認(rèn)為是安全的(船舶停靠時(shí),船底只需不碰海底即可).某船吃水程度(船底離水面的距離)為,如果該船希望在同一天內(nèi)安全進(jìn)出港,請(qǐng)問(wèn),它最多能在港內(nèi)停留( )小時(shí)(忽略進(jìn)出港所需的時(shí)間).

A.6 B.12

C.16 D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列的前項(xiàng)和為,已知

,則下列結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分14分)

已知橢圓C過(guò)點(diǎn),且長(zhǎng)軸長(zhǎng)等于4

)求橢圓C的方程;

是橢圓C的兩個(gè)焦點(diǎn),⊙O是以F1F2為直徑的圓,直線l: y=kx+m⊙O相切,并與橢圓C交于不同的兩點(diǎn)AB,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點(diǎn)M(0,-1),直線l經(jīng)過(guò)點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案