【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓,離心率,且經(jīng)過拋物線的焦點(diǎn).若過點(diǎn)的直線斜率不等于零與橢圓交于不同的兩點(diǎn)E、在B、F之間,
求橢圓的標(biāo)準(zhǔn)方程;
求直線l斜率的取值范圍;
若與面積之比為,求的取值范圍.
【答案】(1);(2);(3).
【解析】
由題意離心率和橢圓的短軸上的頂點(diǎn)坐標(biāo),及之間的關(guān)系可得橢圓的標(biāo)準(zhǔn)方程;
設(shè)直線方程與橢圓聯(lián)立,用判別式大于零得有兩個交點(diǎn)時(shí)的斜率的范圍;
面積之比高相同即是的比,用橫坐標(biāo)的關(guān)系得出的取值范圍.
解:設(shè)橢圓的方程為,則,
拋物線的焦點(diǎn)為
由解得,橢圓的標(biāo)準(zhǔn)方程為;
如圖,由題意知l的斜率存在且不為0,
設(shè)l方程為,
將代入整理得:
,由得,
;
設(shè),,則令,則,
由此可得,且,
,即,
,
,解得又,
,
與面積之比的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為(為參數(shù)),以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線,的極坐標(biāo)方程分別為,,交曲線E于點(diǎn)A,B,交曲線E于點(diǎn)C,D.
(1)求曲線E的普通方程及極坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對高三年級隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計(jì)成績后得到如下列聯(lián)表:
分?jǐn)?shù)不少于120分 | 分?jǐn)?shù)不足120分 | 合計(jì) | |
線上學(xué)習(xí)時(shí)間不少于5小時(shí) | 4 | 19 | |
線上學(xué)習(xí)時(shí)間不足5小時(shí) | |||
合計(jì) | 45 |
(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;
(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);
②若將頻率視為概率,從全校高三該次檢測數(shù)學(xué)成績不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為4的菱形中,,于點(diǎn),將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)求二面角的余弦值;
(3)判斷在線段上是否存在一點(diǎn),使平面平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)學(xué)生的冬奧會知識,弘揚(yáng)奧林匹克精神,北京市多所中小學(xué)校開展了模擬冬奧會各項(xiàng)比賽的活動.為了了解學(xué)生在越野滑輪和旱地冰壺兩項(xiàng)中的參與情況,在北京市中小學(xué)學(xué)校中隨機(jī)抽取了10所學(xué)校,10所學(xué)校的參與人數(shù)如下:
(Ⅰ)現(xiàn)從這10所學(xué)校中隨機(jī)選取2所學(xué)校進(jìn)行調(diào)查.求選出的2所學(xué)校參與越野滑輪人數(shù)都超過40人的概率;
(Ⅱ)現(xiàn)有一名旱地冰壺教練在這10所學(xué)校中隨機(jī)選取2所學(xué)校進(jìn)行指導(dǎo),記X為教練選中參加旱地冰壺人數(shù)在30人以上的學(xué)校個數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)某校聘請了一名越野滑輪教練,對高山滑降、轉(zhuǎn)彎、八字登坡滑行這3個動作進(jìn)行技術(shù)指導(dǎo).規(guī)定:這3個動作中至少有2個動作達(dá)到“優(yōu)”,總考核記為“優(yōu)”.在指導(dǎo)前,該校甲同學(xué)3個動作中每個動作達(dá)到“優(yōu)”的概率為0.1.在指導(dǎo)后的考核中,甲同學(xué)總考核成績?yōu)?/span>“優(yōu)”.能否認(rèn)為甲同學(xué)在指導(dǎo)后總考核達(dá)到“優(yōu)”的概率發(fā)生了變化?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在現(xiàn)代社會中,信號處理是非常關(guān)鍵的技術(shù),我們通過每天都在使用的電話或者互聯(lián)網(wǎng)就能感受到,而信號處理背后的“功臣”就是正弦型函數(shù).函數(shù)的圖象就可以近似的模擬某種信號的波形,則下列說法正確的是( )
A.函數(shù)為周期函數(shù),且最小正周期為
B.函數(shù)為奇函數(shù)
C.函數(shù)的圖象關(guān)于直線對稱
D.函數(shù)的導(dǎo)函數(shù)的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù),),射線,,與曲線交于(不包括極點(diǎn))三點(diǎn),,.
(1)求證:;
(2)當(dāng)時(shí),,兩點(diǎn)在曲線上,求與的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知傾斜角為的直線經(jīng)過拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.
(1)求拋物線的方程;
(2)求過點(diǎn)且與拋物線的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com