【題目】如圖,已知兩個城市、相距,現(xiàn)計(jì)劃在兩個城市之間合建一個垃圾處理廠,立即處理廠計(jì)劃在以為直徑的半圓弧上選擇一點(diǎn)建造(不能選在點(diǎn)、上),其對城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對城和城的總影響度為城和城的影響度之和,記點(diǎn)到城的距離為(單位是),建在處的垃圾處理廠對城和城的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為100,對城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為,當(dāng)垃圾處理廠建在上距離20公里處時,對城和城的總影響度為.

1)將表示成的函數(shù);

2)求當(dāng)垃圾處理廠到兩城市距離之和最大時的總影響度的值;

3)求垃圾處理廠對城和城的總影響度的最小值,并求出此時的值.(計(jì)算結(jié)果均用精確值表示)

【答案】1,;(2;(3,此時.

【解析】

1)先得到,代入數(shù)據(jù)計(jì)算得到答案.

2)利用均值不等式得到,代入函數(shù)計(jì)算得到答案.

3)變形為,利用均值不等式計(jì)算得到答案.

(1)由題意知,

其中當(dāng) ,,解得

所以表示成的函數(shù)為

(2) ,則

當(dāng)時,等號成立,此時

代入函數(shù)得到

3

當(dāng)時等號成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.

(1)當(dāng)x∈[1,e] 時,求f (x)的最小值;

(2)當(dāng)a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍;

2)已知函數(shù),,如果函數(shù)有兩個極值點(diǎn),求證:.(參考數(shù)據(jù):,,為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知橢圓和拋物線有公共焦點(diǎn)F(1,0),的中心和的頂點(diǎn)都在坐標(biāo)原點(diǎn),過點(diǎn)M4,0)的直線與拋物線分別相交于A,B兩點(diǎn).

)寫出拋物線的標(biāo)準(zhǔn)方程;

)若,求直線的方程;

)若坐標(biāo)原點(diǎn)關(guān)于直線的對稱點(diǎn)在拋物線上,直線與橢圓有公共點(diǎn),求橢圓的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動比賽道,賽道的前一部分為曲線段FBC.該曲線段是函數(shù)時的圖象,且圖象的最高點(diǎn)為B賽道的中間部分為長千米的直線跑道CD,且CDEF;賽道的后一部分是以為圓心的一段圓弧DE

(1)求的值和∠DOE的大。

(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個“矩形草坪”,矩形的一邊在道路EF上,一個頂點(diǎn)在半徑OD上,另外一個頂點(diǎn)P在圓弧DE上,求“矩形草坪”面積的最大值,并求此時P點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南充高中扎實(shí)推進(jìn)陽光體育運(yùn)動,積極引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時間,采用簡單隨機(jī)抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計(jì)如下表:

分組

男生人數(shù)

2

16

19

18

5

3

女生人數(shù)

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為鍛煉達(dá)人”.

1)將頻率視為概率,估計(jì)我校7000名學(xué)生中鍛煉達(dá)人有多少?

2)從這100名學(xué)生的鍛煉達(dá)人中按性別分層抽取5人參加某項(xiàng)體育活動.

①求男生和女生各抽取了多少人;

②若從這5人中隨機(jī)抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的上下兩個焦點(diǎn)分別為,過點(diǎn)軸垂直的直線交橢圓兩點(diǎn), 的面積為,橢圓的離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢圓交于兩個不同的點(diǎn),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)分別求、的定義域,并求的值;

2)求的最小值并說明理由;

3)若,,是否存在滿足下列條件的正數(shù),使得對于任意的正數(shù),、、都可以成為某個三角形三邊的長?若存在,則求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果項(xiàng)有窮數(shù)列滿足,即,那么稱有窮數(shù)列為“對稱數(shù)列”.例如,由組合數(shù)組成的數(shù)列就是“對稱數(shù)列”.

(1)設(shè)數(shù)列是項(xiàng)數(shù)為7的“對稱數(shù)列”,其中成等比數(shù)列,且寫出數(shù)列的每一項(xiàng);

(2)設(shè)數(shù)列是項(xiàng)數(shù)為的“對稱數(shù)列”,其中是公差為2的等差數(shù)列,且取得最大值時的取值,并求最大值;

(3)設(shè)數(shù)列是項(xiàng)數(shù)為的對稱數(shù)列”,且滿足為數(shù)列的前項(xiàng)和,若的最小值.

查看答案和解析>>

同步練習(xí)冊答案