【題目】為了響應(yīng)國(guó)家號(hào)召,某校組織部分學(xué)生參與了垃圾分類,從我做起的知識(shí)問卷作答,并將學(xué)生的作答結(jié)果分為合格不合格兩類與問卷的結(jié)果有關(guān)?

不合格

合格

男生

14

16

女生

10

20

1)是否有90%以上的把握認(rèn)為性別問卷的結(jié)果有關(guān)?

2)在成績(jī)合格的學(xué)生中,利用性別進(jìn)行分層抽樣,共選取9人進(jìn)行座談,再?gòu)倪@9人中隨機(jī)抽取5人發(fā)送獎(jiǎng)品,記拿到獎(jiǎng)品的男生人數(shù)為X,求X的分布列及數(shù)學(xué)期望

附:

0100

0050

0010

0001

2703

3841

6635

10828

【答案】(1)沒有90%的把握認(rèn)為性別問卷的結(jié)果有關(guān);(2)分布列見解析,

【解析】

1)根據(jù)獨(dú)立性檢驗(yàn)的思想即可判斷.

2)依題意,成績(jī)合格的男生抽取4人,成績(jī)合格的女生抽取5人,X的可能取值為,求出各隨機(jī)變量的概率,列出分布列即可求出期望.

1)完善列聯(lián)表如下所示:

不合格

合格

合計(jì)

男生

14

16

30

女生

10

20

30

合計(jì)

24

36

60

,

故沒有90%的把握認(rèn)為性別問卷的結(jié)果有關(guān).

2)依題意,成績(jī)合格的男生抽取4人,成績(jī)合格的女生抽取5人,故X的可能取值為,

,,,

,

X的分布列為:

1

2

3

4

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對(duì)延遲退休年齡政策的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,將這100人的年齡數(shù)據(jù)分成5組:,整理得到如圖所示的頻率分布直方圖.

1)由頻率分布直方圖,計(jì)算出各年齡段的人數(shù),并估計(jì)這100人年齡的眾數(shù)、中位數(shù)和平均數(shù);(該小題不用寫解題過程,請(qǐng)?jiān)诖痤}卷上直接寫出答案

2)支持延遲退休的人數(shù)如下表所示,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,據(jù)此表,能否有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)延遲退休年齡政的不支持態(tài)度存在差異?

附:,其中

年齡

支持延遲退休的人數(shù)

15

5

15

28

17

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺(tái)舉行文藝比賽,并通過網(wǎng)絡(luò)對(duì)比賽進(jìn)行直播.比賽現(xiàn)場(chǎng)由5名專家組成評(píng)委給每位參賽選手評(píng)分,場(chǎng)外觀眾也可以通過網(wǎng)絡(luò)給每位參賽選手評(píng)分.每位選手的最終得分需要綜合考慮專家評(píng)分和觀眾評(píng)分.某選手參與比賽后,現(xiàn)場(chǎng)專家評(píng)分情況如下表.另有約數(shù)萬名場(chǎng)外觀眾參與評(píng)分,將觀眾評(píng)分按照分組,繪成頻率分布直方圖如下圖.

(Ⅰ)求a的值,并用頻率估計(jì)概率,估計(jì)某場(chǎng)外觀眾評(píng)分不小于9的概率;

(Ⅱ)從現(xiàn)場(chǎng)專家中隨機(jī)抽取2人,求其中評(píng)分高于9分的至少有1人的概率;

(Ⅲ)考慮以下兩種方案來確定該選手的最終得分.

方案一:計(jì)算所有專家與觀眾評(píng)分的平均數(shù)作為該選手的最終得分;

方案二:分別計(jì)算專家評(píng)分的平均數(shù)和觀眾評(píng)分的平均數(shù),用作為該選手最終得分.

請(qǐng)直接寫出的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線與曲線相切也與曲線相切,則稱直線為曲線和曲線的公切線,已知函數(shù),其中,若曲線和曲線的公切線有兩條,則的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點(diǎn);

(2),證明函數(shù)不存在極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是邊長(zhǎng)為3的正方形, 平面, 平面 .

(1)證明:平面平面;

(2)在上是否存在一點(diǎn),使平面將幾何體分成上下兩部分的體積比為?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓.雙曲線的實(shí)軸頂點(diǎn)就是橢圓的焦點(diǎn),雙曲線的焦距等于橢圓的長(zhǎng)軸長(zhǎng).

1)求雙曲線的標(biāo)準(zhǔn)方程;

2)設(shè)直線經(jīng)過點(diǎn)與橢圓交于兩點(diǎn),求的面積的最大值;

3)設(shè)直線(其中為整數(shù))與橢圓交于不同兩點(diǎn),與雙曲線交于不同兩點(diǎn),問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一工廠對(duì)某條生產(chǎn)線加工零件所花費(fèi)時(shí)間進(jìn)行統(tǒng)計(jì),得到如下表的數(shù)據(jù):

零件數(shù)x(個(gè))

10

20

30

40

50

加工時(shí)間y(分鐘)

62

68

75

82

88

1)從加工時(shí)間的五組數(shù)據(jù)中隨機(jī)選擇兩組數(shù)據(jù),求該兩組數(shù)據(jù)中至少有一組數(shù)據(jù)小于加工時(shí)間的均值的概率;

2)若加工時(shí)間與零件數(shù)具有相關(guān)關(guān)系,求關(guān)于的回歸直線方程;若需加工個(gè)零件,根據(jù)回歸直線預(yù)測(cè)其需要多長(zhǎng)時(shí)間.

(,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且

)若為線段的中點(diǎn),求證平面;

)求三棱錐體積的最大值;

)若,點(diǎn)在線段上,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案