【題目】已知函數(shù)f(x)=x-1+ (aR,e為自然對數(shù)的底數(shù)).

(1)若曲線yf(x)在點(1,f(1))處的切線平行于x軸,求a的值;

(2)當(dāng)a=1時,若直線lykx-1與曲線yf(x)相切,求l的直線方程.

【答案】(1)e(2)(y=(1-e)x-1.

【解析】

(1)依題意,f′(1)=0,從而可求得a的值;

(2)設(shè)切點為(x0,y0),求出函數(shù)的切線方程,求出k即可得到結(jié)論.

解 (1)f′(x)=1-,因為曲線yf(x)在點(1,f(1))處的切線平行于x軸,所以f′(1)=1-=0,解得a=e.

(2)當(dāng)a=1時,f(x)=x-1+,f′(x)=1-.

設(shè)切點為(x0,y0),

f(x0)=x0-1+kx0-1,

f′(x0)=1-k,

②得x0kx0-1+k,即(k-1)(x0+1)=0.

k=1,則②式無解,∴x0=-1,k=1-e.

l的直線方程為y=(1-e)x-1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)設(shè)關(guān)于的一元二次方程,是從這四個數(shù)中任取的一個數(shù),是從這三個數(shù)中任取的一個數(shù),求上述方程有實數(shù)根的概率.

(2)王小一和王小二約定周天下午在銀川大閱城四樓運動街區(qū)見面,約定5:00—6:00見面,先到的等另一人半小時,沒來就可以先走了,假設(shè)他們在自己估計時間內(nèi)到達的可能性相等,求他們兩個能相遇的概率有多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+sinx,且f(y2﹣2y+3)+f(x2﹣4x+1)≤0,則當(dāng)y≥1時, 的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.

(1)求的普通方程和的直角坐標方程;

(2)若過點的直線交于兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(﹣x)+f(x+3)=0;當(dāng)x∈(0,3)時,f(x)= ,其中e是自然對數(shù)的底數(shù),且e≈2.72,則方程6f(x)﹣x=0在[﹣9,9]上的解的個數(shù)為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義域為R的函數(shù)f(x)= ,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個不同的實數(shù)解xi(i=1,2,3,4,5),則f(x1+x2+x3+x4+x5+2)=(
A.
B.
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a∈R,函數(shù)f(x)=lnx﹣ax.
(1)若a=2,求曲線y=f(x)在P(1,﹣2)處的切線方程;
(2)若f(x)無零點,求實數(shù)a的取值范圍;
(3)若f(x)有兩個相異零點x1 , x2 , 求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下命題:
①雙曲線 ﹣x2=1的漸近線方程為y=± x;
②命題P:x∈R+ , sinx+ ≥1是真命題;
③已知線性回歸方程為 =3+2x,當(dāng)變量x增加2個單位,其預(yù)報值平均增加4個單位;
④設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(﹣1<ξ<0)=0.6;
則正確命題的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若x=3是函數(shù)f(x)=(x2+ax+1)ex的極值點,則f(x)的極大值為(  )

A. ﹣2e B. -2 C. 22 D. 6e﹣1

查看答案和解析>>

同步練習(xí)冊答案