已知函數(shù) 
(1)求在點(diǎn)處的切線方程;
(2)證明:曲線與曲線有唯一公共點(diǎn);
(3)設(shè),比較的大小, 并說明理由.

(1)

解析試題分析:(1)首先求出,令,即可求出在點(diǎn)處的切線方程的斜率,代入點(diǎn)斜式即可求出切線方程
(2)令 ,根據(jù),討論上單調(diào)遞增,所以,所以上單調(diào)遞增,
,又,即函數(shù)有唯一零點(diǎn),所以曲線與曲線有唯一公共點(diǎn).
(3)作差得,令,討論, 的單調(diào)性,得到上單調(diào)遞增,而,所以在,可得時(shí),
(1) ,則,點(diǎn)處的切線方程為:,
(2) 令 ,,則
,,
因此,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.
所以,所以上單調(diào)遞增,又,即函數(shù)有唯一零點(diǎn),
所以曲線與曲線有唯一公共點(diǎn).
(3) 設(shè)

,則
,所以 在上單調(diào)增,且 ,
因此,上單調(diào)遞增,而,所以在

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線處的切線方程是.
(1)求的解析式;
(2)求曲線過點(diǎn)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線 y = x3 + x-2 在點(diǎn) P0 處的切線  平行直線
4x-y-1=0,且點(diǎn) P0 在第三象限,
求P0的坐標(biāo); ⑵若直線  , 且 l 也過切點(diǎn)P0 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),在函數(shù)圖象上取不同兩點(diǎn)A、B,設(shè)線段AB的中點(diǎn)為,試探究函數(shù)在Q點(diǎn)處的切線與直線AB的位置關(guān)系?
(3)試判斷當(dāng)時(shí)圖象是否存在不同的兩點(diǎn)A、B具有(2)問中所得出的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點(diǎn),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)(2011•福建)已知a,b為常數(shù),且a≠0,函數(shù)f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(I)求實(shí)數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)a=1時(shí),是否同時(shí)存在實(shí)數(shù)m和M(m<M),使得對(duì)每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)討論內(nèi)和在內(nèi)的零點(diǎn)情況.
(2)設(shè)內(nèi)的一個(gè)零點(diǎn),求上的最值.
(3)證明對(duì)恒有.[來

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)R,求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案