【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在[495,510)內(nèi)的產(chǎn)品為合格品,否則為不合格品.統(tǒng)計結(jié)果如下:

甲流水線樣本的頻數(shù)分布表

產(chǎn)品重量(克)

頻數(shù)

[490,495)

6

[495,500)

8

[500,505)

14

[505,510)

8

[510,515]

4

乙流水線樣本的頻率分布直方圖

(1)求甲流水線樣本合格的頻率;

(2)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,并回答有多大的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān).

分類

甲流水線

乙流水線

總計

合格品

不合格品

總計

附:K2.

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1) ; (2)有的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān).

【解析】

(1)利用頻率分布直方圖計算樣本合格的頻率;(2)完善2×2列聯(lián)表,代入公式求解.

(1)由表知甲流水線樣本中合格品數(shù)為8+14+8=30,故甲流水線樣本中合格品的頻率為=0.75.

(2)由(1)知甲流水線樣本中合格品格數(shù)30,乙流水線樣本中合格品數(shù)為0.9×40=36.

則2×2列聯(lián)表如下:

分類

甲流水線

乙流水線

總計

合格品

30

36

66

不合格品

10

4

14

總計

40

40

80

由2×2列聯(lián)表中的數(shù)據(jù)得K2的觀測值為

K=≈3.12>2.706.

故有90%的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ln(mx+1)﹣2(m≠0).
(1)討論f(x)的單調(diào)性;
(2)若m>0,g(x)=f(x)+ 存在兩個極值點x1 , x2 , 且g(x1)+g(x2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,AP⊥平面PCD,ADBC,ABBCAD,E,F分別為線段AD,PC的中點.

(1)求證:AP∥平面BEF;

(2)求證:BE⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司過去五個月的廣告費(fèi)支出與銷售額(單位:萬元)之間有下列對應(yīng)數(shù)據(jù):


2

4

5

6

8



40

60

50

70

工作人員不慎將表格中的第一個數(shù)據(jù)丟失.已知呈線性相關(guān)關(guān)系,且回歸方程為,則下列說法:銷售額與廣告費(fèi)支出正相關(guān);丟失的數(shù)據(jù)(表中處)為30該公司廣告費(fèi)支出每增加1萬元,銷售額一定增加萬元;若該公司下月廣告投入8萬元,則銷售

額為70萬元.其中,正確說法有( )

A1B2C3D4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù):

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測技改后生產(chǎn)100噸甲產(chǎn)品比技改前少消耗多少噸標(biāo)準(zhǔn)煤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)系中橢圓C的方程為ρ2= ,以極點為原點,極軸為x軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長度.
(1)若橢圓上任一點坐標(biāo)為P(x,y),求 的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點Q,且直線AB與CD的傾斜角互補(bǔ),求證:|QA||QB|=|QC||QD|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《幾何原本》卷2的幾何代數(shù)法(以幾何方法研究代數(shù)問題)成了后世西方數(shù)學(xué)家處理問題的重要依據(jù),通過這一原理,很多的代數(shù)的公理或定理都能夠通過圖形實現(xiàn)證明,也稱之為無字證明.現(xiàn)有如圖所示圖形,點F在半圓O上,點C在直徑AB上,且OF⊥AB,設(shè)AC=a,BC=b,則該圖形可以完成的無字證明為(
A. (a>0,b>0)
B.a2+b2≥2ab(a>0,b>0)
C. (a>0,b>0)
D. (a>0,b>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為F,過F作平行于x軸的直線交拋物線于A,B兩點(AB的左側(cè)),若△AOB的面積為2.

(1)求拋物線C的方程;

(2)設(shè)P是拋物線C的準(zhǔn)線上一點,Q是拋物線上的一點,若PF⊥QF,求證:直線PQ與拋物線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD中點,PA⊥底面ABCD,PA=2.

(1)證明:平面PBE⊥平面PAB;
(2)求直線PC與平面PBE所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案