【題目】

在平面直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù),),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點都在上,且點,依逆時針次序排列,點的極坐標(biāo)為.

(1)求點,的直角坐標(biāo);

(2)設(shè)上任意一點,求點到直線距離的取值范圍.

【答案】(1)見解析;(2).

【解析】試題分析:

(1)由題意可得點的直角坐標(biāo),點的極坐標(biāo)為,直角坐標(biāo)為,點的極坐標(biāo)為,直角坐標(biāo)為.

(2)由題意可得直線的方程為利用點到直線距離公式可得點到直線距離結(jié)合三角函數(shù)的性質(zhì)可得.

試題解析:

(1)由,可得點的直角坐標(biāo)

由已知,點的極坐標(biāo)為,可得兩點的直角坐標(biāo)為,

點的極坐標(biāo)為,同理可得兩點的直角坐標(biāo)為.

(2)直線的方程為,

設(shè)點 ,則點到直線距離

(其中),

因為,所以,所以

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1 , F2 , O為坐標(biāo)原點,點P(1, )在橢圓上,連接PF1交y軸于點Q,點Q滿足 = .直線l不過原點O且不平行于坐標(biāo)軸,l與橢圓C有兩個交點A,B. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點M( ,0),若直線l過橢圓C的右焦點F2 , 證明: 為定值;
(Ⅲ)若直線l過點(0,2),設(shè)N為橢圓C上一點,且滿足 + ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足 , ,其中n∈N+ . (I)求證:數(shù)列{bn}是等差數(shù)列,并求出數(shù)列{an}的通項公式;
(II)設(shè) ,求數(shù)列{cncn+2}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司年會舉行抽獎活動,每位員工均有一次抽獎機會.活動規(guī)則如下:一只盒子里裝有大小相同的6個小球,其中3個白球,2個紅球,1個黑球,抽獎時從中一次摸出3個小球,若所得的小球同色,則獲得一等獎,獎金為300元;若所得的小球顏色互不相同,則獲得二等獎,獎金為200元;若所得的小球恰有2個同色,則獲得三等獎,獎金為100元.

(1)求小張在這次活動中獲得的獎金數(shù)的概率分布及數(shù)學(xué)期望;

(2)若每個人獲獎與否互不影響,求該公司某部門3個人中至少有2個人獲二等獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求證:BD⊥平面ADE;
(2)求直線BE和平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某中學(xué)學(xué)生在周日上網(wǎng)的時間,隨機對名男生和名女生進(jìn)行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計結(jié)果:

表1:男、女生上網(wǎng)時間與頻數(shù)分布表

上網(wǎng)時間(分鐘)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80]

男生人數(shù)

5

25

30

25

15

女生人數(shù)

10

20

40

20

10

(Ⅰ)若該中學(xué)共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);

(Ⅱ)完成下表,并回答能否有90%的把握認(rèn)為“學(xué)生周日上網(wǎng)時間與性別有關(guān)”?

上網(wǎng)時間少于60分鐘

上網(wǎng)時間不少于60分鐘

合計

男生

女生

合計

附:公式,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面為正方形的四棱錐S﹣ABCD中,SA=SB=SC=SD,異面直線AD與SC所成的角為60°,AB=2.則四棱錐S﹣ABCD的外接球的表面積為(
A.6π
B.8π
C.12π
D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:

打算觀看

不打算觀看

女生

20

b

男生

c

25

1)求出表中數(shù)據(jù)bc;

2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);

3)為了計算10人中選出9人參加比賽的情況有多少種,我們可以發(fā)現(xiàn)它與10人中選出1人不參加比賽的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)若函數(shù)在R上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若,證明:當(dāng)時,

參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案