(2011•奉賢區(qū)二模)(理)如下表,已知離散型隨機變量ξ的分布列,則Dξ為
2
2

ξ -2 0 2
p
1
4
1
2
m
分析:根據(jù)所給的分布列,根據(jù)分布列中所有的概率之和是1,求出m的值,代入求方差的公式,得到方差.
解答:解:∵分布列中出現(xiàn)的所有的概率之和等于1,
1
4
+
1
2
+m=1

∴m=
1
4
,
∴隨機變量的方差是Dξ=
1
4
×4+
1
2
×0+
1
4
×4
=2
故答案為:2
點評:本題考查分布列的性質(zhì)和方差,本題解題的關(guān)鍵是根據(jù)分布列的性質(zhì)做出分布列中未知的字母,然后才代入求方差的公式,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(文) 如圖都是由邊長為1的正方體疊成的圖形.例如第(1)個圖形的表面積為6個平方單位,第(2)個圖形的表面積為18個平方單位,第(3)個圖形的表面積是36個平方單位.依此規(guī)律,則第n個圖形的表面積是
3n(n+1)
3n(n+1)
個平方單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)已知|
a
|=|
b
|=2,
a
b
的夾角為
π
3
,則
b
a
上的投影為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)用2π平方米的材料制成一個有蓋的圓錐形容器,如果在制作過程中材料無損耗,且材料的厚度忽略不計,底面半徑長為x,圓錐母線的長為y
(1)建立y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)圓錐的母線與底面所成的角大小為
π3
,求所制作的圓錐形容器容積多少立方米(精確到0.01m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)若復(fù)數(shù)3+i是實系數(shù)一元二次方程x2-6x+b=0的一個根,則b=
10
10

查看答案和解析>>

同步練習(xí)冊答案