【題目】已知函數(shù),,.
(1)試判斷函數(shù)在上的單調(diào)性,并說(shuō)明理由;
(2)若是在區(qū)間上的單調(diào)函數(shù),求的取值范圍.
【答案】(1)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,理由見(jiàn)解析;(2)
【解析】
(1)對(duì)求導(dǎo),可得當(dāng)時(shí),,當(dāng)時(shí),,從而可判斷的單調(diào)性;
(2)由(1)知,在區(qū)間上單調(diào)遞減,從而可求得和,由函數(shù)是在區(qū)間上的單調(diào)函數(shù),可知或時(shí),滿(mǎn)足題意.
(1)因?yàn)?/span>,所以,
所以.
當(dāng)時(shí),,所以在區(qū)間上單調(diào)遞減;
當(dāng)時(shí),,所以在區(qū)間上單調(diào)遞增.
(2)由(1)知,在區(qū)間上單調(diào)遞減,
所以.
當(dāng)時(shí),,所以在區(qū)間上單調(diào)遞減;
當(dāng)時(shí),,所以在區(qū)間上單調(diào)遞增;
當(dāng)時(shí),由于在區(qū)間上單調(diào)遞減,所以存在,使,且當(dāng)時(shí),,所以在區(qū)間上單調(diào)遞增;當(dāng)時(shí),,
所以在區(qū)間上單調(diào)遞減,與已知不符.
故所求的的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,橢圓C:()左,右焦點(diǎn)分別為,,且橢圓的長(zhǎng)軸長(zhǎng)為,右準(zhǔn)線(xiàn)方程為.
(1)求橢圓C的方程;
(2)設(shè)直線(xiàn)l過(guò)橢圓C的右焦點(diǎn),且與橢圓相交與A,B(與左右頂點(diǎn)不重合)
(i)橢圓的右頂點(diǎn)為M,設(shè)的斜率為,的斜率為,求的值;
(ii)若橢圓上存在一點(diǎn)D滿(mǎn)足,求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,是橢圓短軸的一個(gè)頂點(diǎn),并且是面積為的等腰直角三角形.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓相交于兩點(diǎn),過(guò)作與軸垂直的直線(xiàn),已知點(diǎn),問(wèn)直線(xiàn)與的交點(diǎn)的橫坐標(biāo)是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的焦距為,點(diǎn)在橢圓上,且的最小值是(為坐標(biāo)原點(diǎn)).
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)已知?jiǎng)又本(xiàn)與圓:相切,且與橢圓交于,兩點(diǎn).是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>R,且對(duì)于任意x∈R,都有及成立,當(dāng)且時(shí),都有成立,下列四個(gè)結(jié)論中不正確命題是( )
A.B.函數(shù)在區(qū)間上為增函數(shù)
C.直線(xiàn)是函數(shù)的一條對(duì)稱(chēng)軸D.方程在區(qū)間上有4個(gè)不同的實(shí)根
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn)為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,則函數(shù)在上的所有零點(diǎn)之和為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)生產(chǎn)的產(chǎn)品的直徑均位于區(qū)間內(nèi)(單位: ).若生產(chǎn)一件產(chǎn)品的直徑位于區(qū)間內(nèi)該廠(chǎng)可獲利分別為10,30,20,10(單位:元),現(xiàn)從該廠(chǎng)生產(chǎn)的產(chǎn)品中隨機(jī)抽取200件測(cè)量它們的直徑,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計(jì)該廠(chǎng)生產(chǎn)一件產(chǎn)品的平均利潤(rùn);
(2)現(xiàn)用分層抽樣法從直徑位于區(qū)間內(nèi)的產(chǎn)品中隨機(jī)抽取一個(gè)容量為5的樣本,從樣本中隨機(jī)抽取兩件產(chǎn)品進(jìn)行檢測(cè),求兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間內(nèi)的槪率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com