【題目】已知拋物線C1:x2=2py(p>0),點A(p, )到拋物線C1的準線的距離為2.
(1)求拋物線C1的方程;
(2)過點A作圓C2:x2+(y﹣a)2=1的兩條切線,分別交拋物線于M,N兩點,若直線MN的斜率為﹣1,求實數(shù)a的值.

【答案】
(1)解:由拋物線定義可得: ,∴p=2,

∴拋物線C1的方程為:x2=4y.


(2)解:設直線AM,AN的斜率分別為k1,k2,

將lAM:y﹣1=k1(x﹣2)代入x2=4y,得:

x2﹣4k1x+8k1﹣4=0, >0,

∴k1∈R,且k1≠1,

由韋達定理得:xM=4k1﹣2,同理xN=4k2﹣2,

= (xM+xN)=k1+k2﹣1,

又∵直線lMN:y﹣1=k1(x﹣2)與圓相切,∴ ,

整理可得: ,

同理 ,

∴k1,k2是方程3k2+4k(a﹣1)+a2﹣2a=0的兩個根,)

∴k1+k2=﹣ ,代入kMN=k1+k2﹣1=﹣1,

解得a=1.


【解析】(1)由拋物線定義得: ,由此能求出拋物線C1的方程.(2)設直線AM,AN的斜率分別為k1 , k2 , 將lAM:y﹣1=k1(x﹣2)代入x2=4y,得:x2﹣4k1x+8k1﹣4=0,由此利用根的判別式、韋達定理、直線與圓相切、點到直線距離公式,能求出結果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C: =1(a>b>0),作直線l交橢圓于P,Q兩點,M為線段PQ的中點,O為坐標原點,設直線l的斜率為k1 , 直線OM的斜率為k2 , k1k2=﹣
(1)求橢圓C的離心率;
(2)設直線l與x軸交于點D(﹣ ,0),且滿足 =2 ,當△OPQ的面積最大時,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)求不等式的解集;

(2)若關于的不等式能成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)對于任意的都有,當時,則

(1)判斷的奇偶性;

(2)求上的最大值;

(3)解關于的不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高中畢業(yè)班有男生900人,女生600人,學校為了對高三學生數(shù)學學習情況進行分析,從高三年級按照性別進行分層抽樣,抽取200名學生成績,統(tǒng)計數(shù)據(jù)如表所示:

分數(shù)段(分)

[50,70)

[70,90)

[90,110)

[110,130)

[130,150)

總計

頻數(shù)

20

40

70

50

20

200


(1)若成績90分以上(含90分),則成績?yōu)榧案瘢埞烙嬙撔.厴I(yè)班平均成績及格學生人數(shù);
(2)如果樣本數(shù)據(jù)中,有60名女生數(shù)學成績合格,請完成如下數(shù)學成績與性別的列聯(lián)表,并判斷是否有90%的把握認為“該校學生的數(shù)學成績與性別有關”.

女生

男生

總計

及格人數(shù)

60

不及格人數(shù)

總計

參考公式:K2=

P(K2≥k0

0.10

0.050

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線上的任意一點到兩定點距離之和為,直線交曲線兩點,為坐標原點.

1)求曲線的方程;

2)若不過點且不平行于坐標軸,記線段的中點為,求證:直線的斜率與的斜率的乘積為定值;

3)若直線過點,求面積的最大值,以及取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,是平面α內(nèi)的一組基向量,Oα內(nèi)的定點,對于α內(nèi)任意一點P,當x+y時,則稱有序?qū)崝?shù)對(xy)為點P的廣義坐標.若點A、B的廣義坐標分別為(x1,y1)(x2y2),關于下列命題正確的是:()

A.線段AB的中點的廣義坐標為();

B.A、B兩點間的距離為

C.向量平行于向量的充要條件是x1y2x2y1;

D.向量垂直于的充要條件是x1y2+x2y10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|,
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且當x∈[﹣a,1]時,不等式f(x)≤g(x)有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…, ,…,即當 <n≤ (k∈N*)時, .記Sn=a1+a2+…+an(n∈N).對于l∈N , 定義集合Pl=﹛n|Sn為an的整數(shù)倍,n∈N , 且1≤n≤l}
(1)求P11中元素個數(shù);
(2)求集合P2000中元素個數(shù).

查看答案和解析>>

同步練習冊答案