【題目】某縣經濟最近十年穩(wěn)定發(fā)展,經濟總量逐年上升,下表是給出的部分統(tǒng)計數(shù)據:

序號

2

3

4

5

年份

2008

2010

2012

2014

2016

經濟總量(億元)

236

246

257

275

286

(1)如上表所示,記序號為,請直接寫出的關系式;

(2)利用所給數(shù)據求經濟總量與年份之間的回歸直線方程;

(3)利用(2)中所求出的直線方程預測該縣2018年的經濟總量.

附:對于一組數(shù)據,

其回歸直線的斜率和截距的最小二乘估計分別為:

,.

【答案】(1);(2);(3)預測該縣2018年的經濟總量為億元.

【解析】分析:(1)由表格易得;

(2),由公式計算得到,從而得到;

(3)將代入,從而得解.

詳解:(1);

(2)令,則序號的數(shù)據表格為

序號

年份

2008

2010

2012

2014

2016

經濟總量(億元)

計算得,,

,

,

,整理得

即經濟總量與年份之間的回歸直線方程;

(3)取代入,計算得,

∴ 預測該縣2018年的經濟總量為億元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中.

(Ⅰ)當時,求函數(shù)的極值;

(Ⅱ)當時,證明:函數(shù)不可能存在兩個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學餐飲中心為了了解新生的飲食習慣,在某學院大一年級名學生中進行了抽樣調查,發(fā)現(xiàn)喜歡甜品的占.這名學生中南方學生共南方學生中有人不喜歡甜品.

(1)完成下列列聯(lián)表

喜歡甜品

不喜歡甜品

合計

南方學生

北方學生

合計

(2)根據表中數(shù)據,問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;

(3)已知在被調查的南方學生中有名數(shù)學系的學生,其中名不喜歡甜品;名物理系的學生,其中名不喜歡甜品.現(xiàn)從這兩個系的學生中,各隨機抽取記抽出的人中不喜歡甜品的人數(shù)為,的分布列和數(shù)學期望.

附:.

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4﹣4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知點A的極坐標為 ,直線l的極坐標方程為 ,且點A在直線l上.
(1)求a的值及直線l的直角坐標方程;
(2)圓C的參數(shù)方程為 ,試判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校課題組為了研究學生的數(shù)學成績和物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(百分制)如下表所示:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數(shù)學成績

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理成績

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若數(shù)學成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀,則有多少把握認為學生的數(shù)學成績與物理成績有關系( )

A. 95% B. 97.5% C. 99.5% D. 99.9%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的極值;

(2)求函數(shù) 的單調區(qū)間;

(3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A,B,C是橢圓W: 上的三個點,O是坐標原點.
(1)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知函數(shù)的圖像與直線相切,其中是自然對數(shù)的底數(shù).

(1)求實數(shù)的值;

(2)設函數(shù)在區(qū)間內有兩個極值點.

①求實數(shù)的取值范圍;

②設函數(shù)的極大值和極小值的差為,求實數(shù)的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D為AB的中點

(1)求點C到平面A1ABB1的距離;
(2)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.

查看答案和解析>>

同步練習冊答案