【題目】已知橢圓 ,斜率為 的動直線l與橢圓C交于不同的兩點A,B.
(1)設(shè)M為弦AB的中點,求動點M的軌跡方程;
(2)設(shè)F1 , F2為橢圓C在左、右焦點,P是橢圓在第一象限上一點,滿足 ,求△PAB面積的最大值.

【答案】
(1)解:設(shè)M(x,y),A(x1,y1),B(x2,y2),

①, ②;

①﹣②得: ,即

又由中點在橢圓內(nèi)部得 ,

∴M點的軌跡方程為 ;


(2)解:由橢圓的方程可知:F1(﹣ ,0)F2 ,0),P(x,y)(x>0,y>0), =(﹣ ﹣x,﹣y), =( ﹣x,﹣y),

=(﹣ ﹣x,﹣y)( ﹣x,﹣y)=x2﹣3+y2=﹣ ,即x2+y2=

,解得: ,則P點坐標(biāo)為 ,…

設(shè)直線l的方程為 ,

,整理得: ,由△>0得﹣2<m<2,

, ,…

, ,

.…

當(dāng)且僅當(dāng)m2=4﹣m2,即 時,取等號,

∴△PAB面積的最大值1.


【解析】(1)由由 ①, ②;①﹣②得: , ,即 ,由M在橢圓內(nèi)部,則 ,即可求得動點M的軌跡方程;(2)由向量數(shù)量積的坐標(biāo)運算,求得P點坐標(biāo),求得直線l的方程,代入橢圓方程,利用韋達(dá)定理,點到直線的距離公式及三角形的面積公式,根據(jù)基本不等式的性質(zhì),即可求得△PAB面積的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x)﹣f(x)>1,f(0)=2016,則不等式f(x)>2017ex﹣1(其中e為自然對數(shù)的底數(shù))的解集為(
A.(﹣∞,0)∪(0,+∞)
B.(2017,+∞)
C.(0,+∞)
D.(0,+∞)∪(2017,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|﹣1≤x+1≤6},B={x|m﹣1≤x<2m+1}.
(1)當(dāng)x∈Z,求A的真子集的個數(shù)?
(2)若BA,求實數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.如圖是根據(jù)環(huán)保部門某日早6點至晚9點在惠農(nóng)縣、平羅縣兩個地區(qū)附近的PM2.5監(jiān)測點統(tǒng)計的數(shù)據(jù)(單位:毫克/立方米)列出的莖葉圖,惠農(nóng)縣、平羅縣兩個地區(qū)濃度的方差較小的是(
A.惠農(nóng)縣
B.平羅縣
C.惠農(nóng)縣、平羅縣兩個地區(qū)相等
D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)x,y滿足 ,若目標(biāo)函數(shù)z=﹣mx+y的最大值為﹣2m+10,最小值為﹣2m﹣2,則實數(shù)m的取值范圍是(
A.[﹣1,2]
B.[﹣2,1]
C.[2,3]
D.[﹣1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)lnx﹣ax+1.
(1)若f(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若存在唯一整數(shù)x0 , 使得f(x0)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點為極點,x軸的正半軸為極軸的極坐標(biāo)中,圓C的方程為ρ=4cosθ.
(Ⅰ)求l的普通方程和C的直角坐標(biāo)方程;
(Ⅱ)當(dāng)φ∈(0,π)時,l與C相交于P,Q兩點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=25x , g(x)=x+t,設(shè)h(x)=max{f(x),g(x)}.若當(dāng)x∈N+時,恒有h(5)≤h(x),則實數(shù)t的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案