【題目】由甲、乙、丙三個人組成的團隊參加某項闖關(guān)游戲,第一關(guān)解密碼鎖,3個人依次進行,每人必須在1分鐘內(nèi)完成,否則派下一個人.3個人中只要有一人能解開密碼鎖,則該團隊進入下一關(guān),否則淘汰出局.根據(jù)以往100次的測試,分別獲得甲、乙解開密碼鎖所需時間的頻率分布直方圖.

1)若甲解開密碼鎖所需時間的中位數(shù)為47,求、的值,并分別求出甲、乙在1分鐘內(nèi)解開密碼鎖的頻率;

2)若以解開密碼鎖所需時間位于各區(qū)間的頻率代替解開密碼鎖所需時間位于該區(qū)間的概率,并且丙在1分鐘內(nèi)解開密碼鎖的概率為0.5,各人是否解開密碼鎖相互獨立.

①按乙丙甲的先后順序和按丙乙甲的先后順序哪一種可使派出人員數(shù)目的數(shù)學期望更小.

②試猜想:該團隊以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的數(shù)學期望達到最小,不需要說明理由.

【答案】1;;甲在1分鐘內(nèi)解開密碼鎖的頻率是;乙在1分鐘內(nèi)解開密碼鎖的頻率是2)①按乙丙甲派出的順序期望更小②先派出甲,再派乙,最后派丙

【解析】

1)根據(jù)甲解開密碼鎖所需時間的中位數(shù)求得,根據(jù)頻率求得,由此求得甲在1分鐘內(nèi)解開密碼鎖的頻率.通過頻率分布直方圖求得乙在1分鐘內(nèi)解開密碼鎖的頻率.

2

①分別求得兩個不同順序的方法對應的數(shù)學期望,由此求得期望更小的安排方法.

②按照解鎖概率大的人員排前面,期望值最小.通過計算前兩位、后兩位人員交換時,期望值的變化情況,來確定最優(yōu)的排法.

1)甲解開密碼鎖所需時間的中位數(shù)為47

,解得

,解得;

∴甲在1分鐘內(nèi)解開密碼鎖的頻率是;

乙在1分鐘內(nèi)解開密碼鎖的頻率是

2)由(1)知,甲、乙、丙在1分鐘內(nèi)解開密碼鎖的概率分別是,且各人是否解開密碼鎖相互獨立;

設按乙丙甲的順序?qū)臄?shù)學期望為,按丙乙甲的順序?qū)臄?shù)學期望為

,,,,∴

①∴

同理可求得

所以按乙丙甲派出的順序期望更小.

②答案:先派出甲,再派乙,最后派丙,

(下面是理由,給老師和學生參考)

設按先后順序自能完成任務的概率分別為,,,且,,互不相等,

根據(jù)題意知的取值為1,2,3

,,∴,

若交換前兩個人的派出順序,則變?yōu)?/span>

由此可見,當時,交換前兩人的派出順序會增大均值,故應選概率最大的甲先開鎖;

若保持第一人派出的人選不變,交換后兩人的派出順序,

∵交換前,

∴交換后的派出順序則期望值變?yōu)?/span>,

時,交換后的派出順序可增大均值;所以先派出甲,再派乙,最后派丙,

這樣能使所需派出的人員數(shù)目的均值(教學期望)達到最小.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的左、右焦點分別為軸,直線軸于點,,為橢圓上的動點,的面積的最大值為1.

(1)求橢圓的方程;

(2)過點作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個極值點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,離心率為,為坐標原點.

1)求橢圓的標準方程;

2)設,為橢圓上的三點,交于點,且,當的中點恰為點時,判斷的面積是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)求直線的普通方程及曲線的直角坐標方程;

(2)設點,直線與曲線相交于兩點,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題:實數(shù)滿足不等式;命題:函數(shù) 有極值點.

1)若為真命題,為假命題,求實數(shù)的取值范圍;

2)若為真命題,并記為,且,若的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓經(jīng)過伸縮變換,后得到曲線以坐標原點為極點,x軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線l的極坐標方程為

求曲線的直角坐標方程及直線l的直角坐標方程;

上求一點M,使點M到直線l的距離最小,并求出最小距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由團中央學校部、全國學聯(lián)秘書處、中國青年報社共同舉辦的2018年度全國“最美中學生“尋訪活動結(jié)果出爐啦,此項活動于20186月啟動,面向全國中學在校學生,通過投票方式尋訪一批在熱愛祖國、勤奮學習、熱心助人、見義勇為等方面表現(xiàn)突出、自覺樹立和踐行社會主義核心價值觀的“最美中學生”.現(xiàn)隨機抽取了30名學生的票數(shù),線成如圖所示的莖葉圖,若規(guī)定票數(shù)在65票以上(包括65票)定義為風華組.票數(shù)在65票以下(不包括65票)的學生定義為青春組.

(Ⅰ)在這30名學生中,青春組學生中有男生7人,風華組學生中有女生12人,試問有沒有的把握認為票數(shù)分在青春組或風華組與性別有關(guān);

(Ⅱ)如果用分層抽樣的方法從青春組和風華組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在青春組的概率是多少?

(Ⅲ)用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(人數(shù)很多)中隨機選取4人,用表示所選4人中青春組的人數(shù),試寫出的分布列,并求出的數(shù)學期望.

附:;其中

獨立性檢驗臨界表:

0.100

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若有兩個不同的極值點,,求實數(shù)的取值范圍;

2)在(1)的條件下,求證:.

查看答案和解析>>

同步練習冊答案