【題目】已成橢圓 的左右頂點(diǎn)分別為 ,上下頂點(diǎn)分別為 ,左右焦點(diǎn)分別為 ,其中長(zhǎng)軸長(zhǎng)為4,且圓 為菱形 的內(nèi)切圓.
(1)求橢圓 的方程;
(2)點(diǎn) 軸正半軸上一點(diǎn),過(guò)點(diǎn) 作橢圓 的切線 ,記右焦點(diǎn) 上的射影為 ,若 的面積不小于 ,求 的取值范圍.

【答案】
(1)

解:由題意知 ,所以 ,

所以 ,則

直線 的方程為 ,即 ,

所以 ,解得 ,

故橢圓 的方程為


(2)

由題意,可設(shè)直線 的方程為 ,

聯(lián)立 消去 ,(*)

由直線 與橢圓 相切,得 ,

化簡(jiǎn)得 ,

設(shè)點(diǎn) ,由(1)知 ,則

,解得 ,

所以 的面積 ,

代入 消去 化簡(jiǎn)得 ,

所以 ,解得 ,即

從而 ,又 ,所以 ,

的取值范圍為 .


【解析】(1)圓O為菱形 的內(nèi)切圓,則原點(diǎn)到直線 的距離等于圓O的半徑;(2)設(shè)直線 的方程為 ,與橢圓聯(lián)立,直線l與橢圓相切,則判別式為0,列出關(guān)于m,n的方程。設(shè)點(diǎn) ,表示出 的面積,根據(jù)題意 的面積不小于 ,求出n的取值范圍。
【考點(diǎn)精析】本題主要考查了橢圓的概念和橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握平面內(nèi)與兩個(gè)定點(diǎn)的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡稱為橢圓,這兩個(gè)定點(diǎn)稱為橢圓的焦點(diǎn),兩焦點(diǎn)的距離稱為橢圓的焦距;橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)中,分別為的中點(diǎn).

(1)求證:平面;
(2)若平面 , 求平面與平面所成的角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求證:當(dāng)時(shí),
(Ⅲ)設(shè)實(shí)數(shù)k使得對(duì)恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 =1(a>b>0)的左焦點(diǎn)為F,離心率為 ,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左,右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若 =8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在區(qū)間上的最大值為4,最小值為1

1)求實(shí)數(shù)、的值;

2)記,若上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

3)對(duì)于函數(shù),用,1,2,,,將區(qū)間任意劃分成個(gè)小區(qū)間,若存在常數(shù),使得和式對(duì)任意的劃分恒成立,則稱函數(shù)上的有界變差函數(shù).記,試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請(qǐng)說(shuō)明理由.

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( ) (1.)已知等比數(shù)列{an},則“數(shù)列{an}單調(diào)遞增”是“數(shù)列{an}的公比q>1”的充分不必要條件;
(2.)二項(xiàng)式 的展開(kāi)式按一定次序排列,則無(wú)理項(xiàng)互不相鄰的概率是 ;
(3.)已知 ,則 ;
(4.)為了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為40.
A.(1)(2)
B.(2)(3)
C.(1)(3)
D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正三棱柱ABC﹣A1B1C1底邊長(zhǎng)為2,E,F(xiàn)分別為BB1 , AB的中點(diǎn). (I)已知M為線段B1A1上的點(diǎn),且B1A1=4B1M,求證:EM∥面A1FC;
(II)若二面角E﹣A1C﹣F所成角的余弦值為 ,求AA1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞) (Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2lnx+x2﹣2ax(a>0). (I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),且f(x1)﹣f(x2)≥ ﹣2ln2恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案