精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為為參數),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程及曲線的直角坐標方程;

(2)設點,直線與曲線相交于兩點、,求的值.

【答案】(1) 直線的普通方程為;曲線的直角坐標方程是. (2)

【解析】

(1)利用參數方程與普通方程互化及極坐標與普通方程互化求解即可;(2)直線參數方程與曲線C聯立,利用t的幾何意義結合韋達定理求解即可

(1)消去參數t得直線的普通方程為;

因為,所以,由

所以曲線的直角坐標方程是.

(2)點是直線上的點,設,兩點所對應的參數分別為,

將直線的參數方程代入曲線的直角坐標方程,得 .

方程判別式,可得,.

于是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在四棱錐中,底面為直角梯形,,,,,為線段上的中點.

(1)證明:平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的離心率,左、右焦點分別為,拋物線的焦點F恰好是該橢圓的一個頂點.

(1)求橢圓C的方程;

(2)已知圓M的切線與橢圓相交于A、B兩點,那么以AB為直徑的圓是否經過定點?如果是,求出定點的坐標;如果不是,請說明理由,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】101日,某品牌的兩款最新手機(記為型號,型號)同時投放市場,手機廠商為了解這兩款手機的銷售情況,在101日當天,隨機調查了5個手機店中這兩款手機的銷量(單位:部),得到下表:

手機店

型號手機銷量

6

6

13

8

11

型號手機銷量

12

9

13

6

4

(Ⅰ)若在101日當天,從,這兩個手機店售出的新款手機中各隨機抽取1部,求抽取的2部手機中至少有一部為型號手機的概率;

(Ⅱ)現從這5個手機店中任選3個舉行促銷活動,用表示其中型號手機銷量超過型號手機銷量的手機店的個數,求隨機變量的分布列和數學期望;

(III)經測算,型號手機的銷售成本(百元)與銷量(部)滿足關系.若表中型號手機銷量的方差,試給出表中5個手機店的型號手機銷售成本的方差的值.(用表示,結論不要求證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,,.

(Ⅰ)若點的中點,求證:∥平面;

(Ⅱ)當平面平面時,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知非空集合滿足.若存在非負整數,使得當時,均有,則稱集合具有性質.記具有性質的集合的個數為.

(1)求的值;

(2)求的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,以為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數方程為,( 為參數).直線與曲線分別交于、兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若點的直角坐標為,,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為常數.

(1)若直線是曲線的一條切線,求實數的值;

(2)當時,若函數上有兩個零點.求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于以為公共焦點的橢圓和雙曲線,設是它們的一個公共點,,分別為它們的離心率.,則的最大值為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案