如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過(guò)作圓柱的截面交下底面于,四邊形ABCD是正方形.

(Ⅰ)求證
(Ⅱ)求四棱錐E-ABCD的體積.

(Ⅰ)詳見(jiàn)解析;(Ⅱ)

解析試題分析:(Ⅰ)根據(jù)AE是圓柱的母線,所以下底面,又下底面,則 
又截面ABCD是正方形,所以,又⊥面,又,即可得到BC⊥BE;
(Ⅱ)根據(jù)錐體的體積公式即可求四棱錐E-ABCD的體積.
試題解析:(Ⅰ)AE是圓柱的母線,
下底面,又下底面,           .3分
截面ABCD是正方形,所以,又
⊥面,又,             (7分)
(Ⅱ)因?yàn)槟妇垂直于底面,所以是三棱錐的高      (8分),
由(Ⅰ)知⊥面,⊥面,
,,
,即EO就是四棱錐的高       (10分)
設(shè)正方形的邊長(zhǎng)為, 則,
為直徑,即
中,,   即
,                          (12分)


考點(diǎn):1.棱柱、棱錐、棱臺(tái)的體積;2.空間中直線與直線之間的垂直關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,為了制作一個(gè)圓柱形燈籠,先要制作4個(gè)全等的矩形骨架,總計(jì)耗用9.6米鐵絲.再用S平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).

(1)當(dāng)圓柱底面半徑r取何值時(shí),S取得最大值?并求出該最大值(結(jié)果精確到0.01平方米).
(2)若要制作一個(gè)如圖放置的、底面半徑為0.3米的燈籠,請(qǐng)作出燈籠的三視圖(作圖時(shí),不需考慮骨架等因素).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一個(gè)四棱錐PABCD的三視圖(正視圖與側(cè)視圖為直角三角形,俯視圖是帶有一條對(duì)角線的正方形)如圖,E是側(cè)棱PC的中點(diǎn).

(1)求四棱錐PABCD的體積;
(2)求證:平面APC⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖C,D是以AB為直徑的圓上的兩點(diǎn),,F是AB上的一點(diǎn),且,將圓沿AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知

(1)求證:AD平面BCE
(2)求證:AD//平面CEF;
(3)求三棱錐A-CFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,底面是菱形,,,的中點(diǎn),點(diǎn)在側(cè)棱上.

(1)求證:⊥平面;
(2)若的中點(diǎn),求證://平面;
(3)若,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形ABCD為矩形,四邊形ADEF為梯形,AD//FE,∠AFE=60º,且平面ABCD⊥平面ADEF,AF=FE=AB==2,點(diǎn)G為AC的中點(diǎn).

(Ⅰ)求證:EG//平面ABF;
(Ⅱ)求三棱錐B-AEG的體積;
(Ⅲ)試判斷平面BAE與平面DCE是否垂直?若垂直,請(qǐng)證明;若不垂直,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

()如圖,四棱錐中,平面,底面是平行四邊形,,的中點(diǎn)

(Ⅰ)求證:
(Ⅱ)試在線段上確定一點(diǎn),使,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直三棱柱的三視圖如圖所示,且的中點(diǎn).

(Ⅰ)求證:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問(wèn)線段上是否存在點(diǎn),使 角?若存在,確定點(diǎn)位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直四棱柱ABCD–A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=,AA1=3,E為CD上一點(diǎn),DE=1,EC=3

(1)證明:BE⊥平面BB1C1C;
(2)求點(diǎn)到平面EA1C1的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案