【題目】已知冪函數(shù)在上是增函數(shù),且在定義域上是偶函數(shù).
(1)求p的值,并寫出相應(yīng)的函數(shù)的解析式.
(2)對于(1)中求得的函數(shù),設(shè)函數(shù),問是否存在實數(shù),使得在區(qū)間上是減函數(shù),且在區(qū)間上是增函數(shù)?若存在,請求出q;若不存在,請說明理由.
【答案】(1)當(dāng)或時,;當(dāng)時,;(2)存在,.
【解析】
(1)由冪函數(shù)的單調(diào)性確定參數(shù)的可能取值,再由偶函數(shù)的性質(zhì)確定的值.
(2)把作為一個整體,時,,時,.結(jié)合二次函數(shù)的單調(diào)性可得值.
(1)由于已知在上是增函數(shù),因而,解得.
又,因而或1或2.
當(dāng)或時,,不是偶函數(shù);
當(dāng)時,,符合題意.
(2)存在.理由如下:
由(1)知.
由于,因而當(dāng)時,,
此時,函數(shù)單調(diào)遞減,而函數(shù)在上單調(diào)遞減,
則外層函數(shù)在上單調(diào)遞增;
當(dāng)時,,
此時,函數(shù)單調(diào)遞增,而函數(shù)在上單調(diào)遞減,
則外層函數(shù)在上單調(diào)遞減.
所以,即.
所以存在滿足題設(shè)條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一袋中有大小相同的4個紅球和2個白球,給出下列結(jié)論:
①從中任取3球,恰有一個白球的概率是;
②從中有放回的取球6次,每次任取一球,則取到紅球次數(shù)的方差為;
③現(xiàn)從中不放回的取球2次,每次任取1球,則在第一次取到紅球的條件下,第二次再次取到紅球的概率為;
④從中有放回的取球3次,每次任取一球,則至少有一次取到紅球的概率為.
其中所有正確結(jié)論的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時,求的最大值和最小值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅?zhǔn)悄媳背瘯r代的偉大科學(xué)家,5世紀(jì)末提出體積計算原理,即祖暅原理: “冪勢既同,則積不容異”.意思是:夾在兩個乎行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現(xiàn)將曲線繞軸旋轉(zhuǎn)一周得到的幾何體叫做橢球體,記為,幾何體的三視圖如圖所示.根據(jù)祖暅原理通過考察可以得到的體積,則的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】獨(dú)立性檢驗中,假設(shè):運(yùn)動員受傷與不做熱身運(yùn)動沒有關(guān)系.在上述假設(shè)成立的情況下,計算得的觀測值.下列結(jié)論正確的是
A. 在犯錯誤的概率不超過0.01的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動有關(guān)
B. 在犯錯誤的概率不超過0.01的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動無關(guān)
C. 在犯錯誤的概率不超過0.005的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動有關(guān)
D. 在犯錯誤的概率不超過0.005的前提下,認(rèn)為運(yùn)動員受傷與不做熱身運(yùn)動無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將4名志愿者分別安排到火車站、輪渡碼頭、機(jī)場工作,要求每一個地方至少安排一名志愿者,其中甲、乙兩名志愿者不安排在同一個地方工作,則不同的安排方法共有
A. 24種B. 30種C. 32種D. 36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某野生動物保護(hù)區(qū)內(nèi)某種野生動物的數(shù)量,調(diào)查人員某天逮到這種動物1200只作好標(biāo)記后放回,經(jīng)過一星期后,又逮到這種動物1000只,其中作過標(biāo)記的有100只,按概率的方法估算,保護(hù)區(qū)內(nèi)有多少只該種動物.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(2)若對于任意,都有成立,求實數(shù)的取值范圍;
(3)若,且,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com