【題目】下列四個(gè)結(jié)論:
①若點(diǎn)為角終邊上一點(diǎn),則;
②命題“存在,”的否定是“對于任意的,”;
③若函數(shù)在上有零點(diǎn),則;
④“(且)”是“,”的必要不充分條件.
其中正確結(jié)論的個(gè)數(shù)是()
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
【答案】C
【解析】
對于①,由三角函數(shù)的定義,討論,即可;
對于②,由全稱命題與特稱命題的關(guān)系判斷即可得解;
對于③,由零點(diǎn)定理,需討論函數(shù)在是否單調(diào);
對于④,由充分必要性及對數(shù)的運(yùn)算即可得解.
解:對于①,當(dāng)時(shí),有,
當(dāng)時(shí),有,即①錯(cuò)誤;
對于②,命題“存在,”的否定是“對于任意的,”;由特稱命題的否定為全稱命題,則②顯然正確;
對于③,若函數(shù)在上有零點(diǎn),則;
若函數(shù)在為單調(diào)函數(shù),則必有,若函數(shù)在不單調(diào),則必有,不一定成立,即③錯(cuò)誤;
對于④,當(dāng)“,”時(shí),可得到“(且)”,
當(dāng)“(且)”時(shí),則“,”或“,”,
即④正確,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=AD,點(diǎn)M在線段EF上。
(1)求證:BC⊥平面ACFE;
(2)若,求證:AM∥平面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代十進(jìn)制的算籌計(jì)數(shù)法,在數(shù)學(xué)史上是一個(gè)偉大的創(chuàng)造.根據(jù)史書的記載和考古材料的發(fā)現(xiàn),古代的算籌實(shí)際上是一根根同樣長短和粗細(xì)的小棍子,一般長為,徑粗,多用竹子制成,也有用木頭、獸骨、象牙、金屬等材料制成的,大約二百七十幾枚為一束,放在一個(gè)布袋里,系在腰部隨身攜帶.需要記數(shù)和計(jì)算的時(shí)候,就把它們?nèi)〕鰜,放在桌上、炕上或地上都能擺弄.在算籌計(jì)數(shù)法中,以縱橫兩種排列方式來表示數(shù)字.如圖,是利用算籌表示數(shù)1~9的一種方法.例如:3可表示為“”,26可表示為“”,現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則用這6根算籌能表示的兩位數(shù)的個(gè)數(shù)為( )
A.13B.14C.15D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過點(diǎn),,直線:與橢圓相交于,兩點(diǎn),與圓相切與點(diǎn).
(1)求橢圓的方程;
(2)以線段,為鄰邊作平行四邊形,若點(diǎn)在橢圓上,且滿足(是坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍;
(3)是否為定值,如果是,求的值;如果不是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖像與軸交于,兩點(diǎn),交直線于,兩點(diǎn),經(jīng)過三點(diǎn),,作圓.
(1)求證:當(dāng)變化時(shí),圓的圓心在一條定直線上;
(2)求證:圓經(jīng)過除原點(diǎn)外的一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在多面體中,,,,,且平面平面.
(1)設(shè)點(diǎn)為線段的中點(diǎn),試證明平面;
(2)若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年1月1日,我國全面實(shí)行二孩政策,某機(jī)構(gòu)進(jìn)行了街頭調(diào)查,在所有參與調(diào)查的青年男女中,持“響應(yīng)”“猶豫”和“不響應(yīng)”態(tài)度的人數(shù)如下表所示:
響應(yīng) | 猶豫 | 不響應(yīng) | |
男性青年 | 500 | 300 | 200 |
女性青年 | 300 | 200 | 300 |
根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為猶豫與否與性別有關(guān)?請說明理由.
猶豫 | 不猶豫 | 總計(jì) | |
男性青年 | |||
女性青年 | |||
總計(jì) | 1800 |
參考公式:
參考數(shù)據(jù):
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在打擊拐賣兒童犯罪的活動(dòng)中,警方救獲一名男孩,為了確定他的家鄉(xiāng),警方進(jìn)行了調(diào)查:
知情人士A說,他可能是四川人,也可能是貴州人;
知情人士B說,他不可能是四川人;
知情人士C說,他肯定是四川人;
知情人士D說,他不是貴州人.
警方確定,只有一個(gè)人的話不可信.根據(jù)以上信息,警方可以確定這名男孩的家鄉(xiāng)是( )
A.四川B.貴州
C.可能是四川,也可能是貴州D.無法判斷
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com