(05年上海卷)(本題滿分14分)

假設(shè)某市2004年新建住房400萬平方米,其中有250萬平方米是中低價房.預(yù)計在今后的若干年后,該市每年新建住房面積平均比上年增長8%.另外,每年新建住房中,中底價房的面積均比上一年增加50萬平方米.那么,到哪一年底

       (1)該市歷年所建中低價房的累計面積(以2004年為累計的第一年)將首次不少于4750萬平方米?

       (2)當(dāng)年建造的中低價房的面積占該年建造住房面積的比例首次大于85%?

解析:(1)設(shè)中低價房面積形成數(shù)列,由題意可知是等差數(shù)列,

其中a1=250,d=50,則

  即

∴到2013年底,該市歷年所建中低價房的累計面積將首次不少于4750萬平方米.

(2)設(shè)新建住房面積形成數(shù)列{bn},由題意可知{bn}是等比數(shù)列,

其中b1=400,q=1.08,   則bn=400?(1.08)n1

由題意可知

有250+(n-1)50>400 ? (1.08)n1 ? 0.85.

由計算器解得滿足上述不等式的最小正整數(shù)n=6,

∴到2009年底,當(dāng)年建造的中低價房的面積占該年建造住房面積的比例首次大于85%.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年江蘇百校樣本分析)(10分)挑選空軍飛行學(xué)員可以說是“萬里挑一”,要想通過需過“五關(guān)”――目測、初檢、復(fù)檢、文考、政審等. 某校甲、乙、丙三個同學(xué)都順利通過了前兩關(guān),有望成為光榮的空軍飛行學(xué)員. 根據(jù)分析,甲、乙、丙三個同學(xué)能通過復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過文考關(guān)的概率分別是0.6,0.5,0.4,通過政審關(guān)的概率均為1.后三關(guān)相互獨(dú)立.

(1)求甲、乙、丙三個同學(xué)中恰有一人通過復(fù)檢的概率;

(2)設(shè)通過最后三關(guān)后,能被錄取的人數(shù)為,求隨機(jī)變量的期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年江蘇百校樣本分析)(10分)(矩陣與變換)  給定矩陣  A=, =

(1)求A的特征值及對應(yīng)的特征向量;  

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年莆田四中一模理) (14分)

由函數(shù)確定數(shù)列,若函數(shù)的反函數(shù) 能確定數(shù)列,,則稱數(shù)列是數(shù)列的“反數(shù)列”。

(1)若函數(shù)確定數(shù)列的反數(shù)列為,求的通項(xiàng)公式;

(2)對(1)中,不等式對任意的正整數(shù)恒成立,求實(shí)數(shù)的范圍;

(3)設(shè),若數(shù)列的反數(shù)列為,的公共項(xiàng)組成的數(shù)列為;求數(shù)列項(xiàng)和

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年遼寧卷)(12分)

已知函數(shù).設(shè)數(shù)列滿足,,數(shù)列滿足

,,

(Ⅰ)用數(shù)學(xué)歸納法證明;(Ⅱ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年湖北卷文)(12分)

設(shè)數(shù)列的前n項(xiàng)和為Sn=2n2,為等比數(shù)列,且

   (Ⅰ)求數(shù)列的通項(xiàng)公式;

   (Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊答案