【題目】如圖, 平面平面為等邊三角形,, 過作平面交分別于點(diǎn),設(shè).
(1)求證:平面;
(2)求的值, 使得平面與平面所成的銳二面角的大小為.
【答案】(1)詳見解析(2)
【解析】
試題分析:(1)證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行的尋找與論證,往往需結(jié)合平幾條件,如三角形相似,本題可根據(jù)得,而,因此(2)利用空間向量研究二面角,首先利用垂直關(guān)系建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解兩個平面的法向量,利用向量數(shù)量積求夾角,最后根據(jù)向量夾角與二面角之間關(guān)系得等量關(guān)系,求的值
試題解析:(1)證明:如圖, 以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,不妨設(shè),則,
由 ,得,則.易知是平面的一個法向量, 且,故,又因?yàn)?/span>平面,平面.
(2),設(shè)平面法向量為,則,故可取,又是平面的一個法向量, 由為平面與平面所成銳二面角的度數(shù)), 以及得,. 解得或(舍去), 故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,直線(為參數(shù))
寫出曲線的參數(shù)方程,直線的普通方程;
過曲線上任意一點(diǎn)作與夾角為30°的直線,交于點(diǎn),求的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD為矩形,PA⊥平面ABCD,PA=AD,M,N,Q分別是PC,AB,CD的中點(diǎn).
求證:(1)MN∥平面PAD;
(2)平面QMN∥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=1時,求函數(shù)f(x)在[1,e]上的最小值和最大值;
(2)當(dāng)a≤0時,討論函數(shù)f(x)的單調(diào)性;
(3)是否存在實(shí)數(shù)a,對任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)分別為橢圓的左、右焦點(diǎn),點(diǎn)為橢圓的左頂點(diǎn),點(diǎn)為橢圓的上頂點(diǎn),且.
(1)若橢圓的離心率為,求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),且在第一象限內(nèi),直線與軸相交于點(diǎn),若以為直徑的圓經(jīng)過點(diǎn),證明:點(diǎn)在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)沒有實(shí)根”的否命題;
②命題“在△ ABC中,若AB=BC=CA,則△ ABC為等邊三角形”的逆命題;
③命題“若a>b>0,則a>b>0”的逆否命題;
④命題“若m>1,則mx2-2(m+1)x+(m-3)<0的解集為R”的逆命題.
其中真命題的序號為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交通部門對某路段公路上行駛的汽車速度實(shí)施監(jiān)控,從速度在50﹣90km/h的汽車中抽取150輛進(jìn)行分析,得到數(shù)據(jù)的頻率分布直方圖如圖所示,則速度在70km/h以下的汽車有輛.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運(yùn)算法則:
①“mn=nm”類比得到“a·b=b·a”;
②“(m+n)t=mt+nt”類比得到“(a+b)·c=a·c+b·c”;
③“t≠0,mt=ntm=n”類比得到“c≠0,a·c=b·ca=b”;
④“|m·n|=|m|·|n|”類比得到“|a·b|=|a|·|b|”;
⑤“(m·n)t=m(n·t)”類比得到“(a·b)·c=a(b·c)”;
⑥“”類比得到.以上的式子中,類比得到的結(jié)論正確的是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com